Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

750

.pdf
Скачиваний:
4
Добавлен:
15.11.2022
Размер:
4.01 Mб
Скачать

20–40 м и мощностью 100–500 кВт, построены опытные горизонтальные ВЭУ с диаметром колеса до 70–100 м и мощностью 3–4 МВт.

Для вертикальных ВЭУ не нужна система ориентации, что является их преимуществом. Кроме того, карусельные ветродвигатели тихоходны, это позволяет использовать простые электрические схемы, например, с асинхронным генератором, без риска потерпеть аварию при случайном порыве ветра, однако тихоходность выдвигает одно ограничивающее требование – использование многополюсного генератора, работающего на малых оборотах. Такие генераторы не имеют широкого распространения, а использование мультипликаторов не эффективно из-за низкого КПД последних. Ветродвигатели подобного типа строятся в США, Японии, Англии, ФРГ, Канаде.

В России же одним из возможных направлений развития ветроэнергетики стало создание многомодульных ветроэнергетических установок (МВЭУ), состоящих из 1–2 десятков небольших ветроколес диаметром до 2 м. В программе МВЭУ участвуют несколько предприятий. Среди них Центральный аэрогидродинамический институт (ЦАГИ), занимающийся вопросами аэродинамики, испытанием моделей и изготовлением опытных образцов; НИИ электрификации сельского хозяйства (испытания на полигоне) и Московский государственный открытый университет, где на кафедре электроприводов разрабатывают и изготавливают электрическую часть МВЭУ. Производством наиболее сложных элементов конструкций – легких и прочных углепластиковых профилированных лопаток и кольцевого обтекателя – на стадии изготовления опытных образцов занимается ЗАО «Мельников». Совместными усилиями они разработали и приступили к созданию модульной ветроэнергетической установки оригинальной конструкции, в которой недостатки ВЭУ сведены к минимуму. Усовершенствованная конструкция ветро-

221

двигателя получила название «Модуль». Несмотря на то, что потери мощности в нем по сравнению с ВЭУ традиционной схемы возрастают за счет трения с 7 до 20 % (пропорционально увеличению площади обтекаемых поверхностей), суммарные потери мощности снижаются примерно в 2 раза. Этого удалось достичь благодаря применению более совершенной аэродинамической схемы (рис. 5.2).

На данном этапе проектируются модули с кольцевым обтекателем диаметром 1 м («Мини-модуль») и 2 м («Максимодуль»). При скорости ветра 10 м/с мощность первого составляет 0,25 кВт, а второго – 1 кВт. Естественно, большую мощность и наибольший экономический эффект дают многомодульные установки.

Разработчики предлагают МВЭУ в двух компоновках. Первая из них – «Венец» – предназначена для обеспечения

аб

Рис. 5.2. Конструкция одного модуля ветродвигателя «Модуль»: а – сбоку; б – со стороны ветрового потока

электроэнергией в основном индивидуальных домов. Установка представляет собой усеченное осесимметричное центральное тело, вокруг которого по окружности смонтировано несколько ветроэнергетических модулей. «Венец» устанав-

222

ливают на крышах зданий. Вторая компоновка – МВЭУ «Башня» – может вырабатывать электроэнергию для небольших поселков. Она состоит из группы МВЭУ «Венец», определенным образом расположенных на возвышенности (башне).

5.2.2. Основные проблемы и перспективы ветроэнергетики

Сравнительно медленное внедрение ВЭУ в практическую энергетику обусловлено рядом объективных причин.

Первая причина – особенности ветра как источника энергии. Ветер обладает крайне непостоянными характеристиками, имеет большие текущие (мгновенные) колебания скорости, средние скорости ветра существенно изменяются в суточном и годовом цикле. Мировая практика показала, что при среднегодовых скоростях ветра менее 4–5 м/с применение ВЭУ неэффективно. Исходя из этих условий, согласно ветровому кадастру страны, не более 40 % ее территории может использоваться для выработки электроэнергии. Значительным ветроэнергетическим потенциалом обладают зоны побережья и островов Северного Ледовитого и Тихого океанов, Азово-Черноморская и Каспийская зоны.

Можно указать следующие достоинства и недостатки энергии ветра. Достоинства: отсутствие влияния на тепловой баланс атмосферы Земли, отсутствие потребления кислорода, выбросов углекислого газа и других загрязнителей, возможность преобразования в различные виды энергии (механическую, тепловую, электрическую). Недостатки: низкая плотность энергии, приходящаяся на единицу площади ветрового колеса; непредсказуемые изменения скорости ветра в течение суток и сезона, требующие резервирования ветровой станции или аккумулирования произведенной энергии; отрицательное влияние на среду обитания человека и жи-

223

вотных, на телевизионную связь и пути сезонной миграции птиц.

Вторая причина – особенности преобразования энергии ветра в электрическую. Во всем мире базовой моделью для ВЭУ единичной мощностью до 300 кВт является двухили трехлопастное ветроколесо горизонтально-пропеллерного типа, поднятое на соответствующую высоту с помощью башни. Для ВЭУ мегаваттного класса разрабатываются конструкции с вертикальной осью вращения. Диаметр ветроколеса для малых мощностей измеряется метрами, средних и больших – десятками метров.

Третьей причиной медленного внедрения в практику ВЭУ является их высокая стоимость. По данным различных источников стоимость 1 кВт вводимой в эксплуатацию мощности ВЭУ составляет от 1000 до 1500 долл., что в несколько раз превышает капиталовложения в дизельные электростанции небольшой мощности (до 300 кВт), составляющие 200– 250 долл./кВт.

Эти общеизвестные причины могут быть дополнены специфическими причинами отсутствия ВЭУ даже на тех объектах, где применение их по метеоусловиям кажется очевидным (объекты гидрометеослужб, объекты связи на Севере и Дальнем Востоке, вахтовые поселки, малые городки в районах нефтедобычи и лесоразработок и т.п.). К ним относятся:

1) специфические резкопеременные графики нагрузок;

2) соизмеримая мощность отдельных потребителей с мощностью источника и, как следствие, динамические нагрузки на источник;

3)наличие особой группы электроприемников I категории, не допускающих перерывов в электроснабжении;

4)высокие требования к надежности оборудования, обусловленные низкой квалификацией обслуживающего персонала и невозможностью проведения ремонтных работ в межнавигационный период.

224

Недостатком ветроэнергетических станций является также изъятие под их строительство больших площадей земельных ресурсов. Под мощные промышленные ветроэнергетические станции необходима площадь из расчета от 5 до 15 км2 на 1 МВт в зависимости от розы ветров и местного рельефа района. Максимальная мощность, которая может быть получена с единицы площади, меняется в зависимости от района использования, типа станций и технологических особенностей конструкции. Среднее ее значение – около 10 МВт. Для ВЭС мощностью 1000 МВт потребуется площадь 70–200 км2, хотя частично эти земли могут использоваться для сельскохозяйственных нужд, что в большей мере зависит от шумовых эффектов и степени риска при поломках ВЭУ. Например, у больших ВЭУ лопасть при поломках и отрыве может быть отброшена на 400–800 м.

Наиболее важный фактор влияния ВЭУ на окружающую среду – это акустическое воздействие. Шумовые эффекты от ВЭУ имеют различную природу и подразделяются на механические (шум от редукторов, подшипников и генераторов)

иаэродинамические воздействия, которые, в свою очередь, могут быть низкочастотными (менее 16–20 Гц) и высокочастотными (до нескольких килогерц). Эти воздействия вызваны в основном вращением рабочего колеса. Шумовой эффект в непосредственной близости ВЭС достигает 50–80 дБ. Отдельную экологическую проблему составляют шумовые воздействия установок мощностью более 250 кВт, когда на концах лопаток ветроколес большого диаметра скорости сверхзвуковые. При этом возникает инфразвуковой эффект, отрицательно воздействующий на биологические субъекты

ичеловека. Примеры: установка мощностью 2 МВт с лопастью пропеллера 60 м производит такой шум, что ее нужно отключать в ночное время.

Современные относительно мощные ВЭУ производятся сейчас в Дании, Германии, США, Швеции, Японии, Испании,

225

Великобритании. Как правило, они имеют трехлопастные роторы (реже двухлопастные). Установка обычно рассчитывается на скорость ветра от 3 до 25 м/с; максимальная скорость ветра, которую должны выдержать лопасти и несущая мачта, – 60 м/с. Энергия вращения ротора передается на асинхронный генератор через редуктор и разъемную муфту, размещаемые в капсуле (гондоле) ВЭУ. Хотя лопасти ВЭУ внешне похожи на вертолетные, условия их работы принципиально отличны. Лопастям придается специальная форма с сужением к концу для уменьшения шума от вращающегося ротора, капсула также имеет специальную звукоизоляцию. В результате уровень шума в непосредственной близости от ВЭУ обычно не превышает 100 дБ.

Весьма перспективную концепцию, названную Windformer, предложила фирма ABB (ныне входящая в концерн ALSTOM). В этой ВЭУ, в отличие от традиционной, вместо обычного асинхронного генератора используется специальный генератор высокого напряжения, отсутствуют редуктор, устройство плавного запуска, разъемная муфта, трансформатор. Все это существенно сокращает размеры капсулы ВЭУ, повышает общую надежность и ремонтопригодность, снижает уровень шума. Генерируемый переменный ток высокого напряжения (свыше 20 кВ) преобразуется в постоянный ток. Несколько ВЭУ объединяются в группу (кластер), и энергия от них поступает по кабелям постоянного тока к общему преобразователю, подключенному к сети. Первая такая ВЭУ расчетной мощностью 3 МВт с трехлопастным ротором диаметром 90 м и высотой мачты 70 м сооружается в настоящее время в Швеции.

Наиболее вероятно, что развитие ветроэнергетики в России в ближайшем будущем будет осуществляться на базе использования ветроэнергетических установок в диапазоне единичных мощностей от 5 до 100 кВт. Такие установки будут применяться для нужд насосного водоснабжения и для

226

сельской электрификации совместно с электрическими аккумулирующими устройствами, рассчитанными на электроснабжения потребителей в течение 2 сут. Разрабатываются также ветроэнергетические установки единичной мощностью в диапазоне от 100 кВт до 5 МВт, предназначенные для выработки электроэнергии в составе существующих энергетических систем.

5.3. Энергия земли и геотермальные электростанции

Энергетика земли – геотермальная энергетика – базируется на использовании природной теплоты земли.

Верхняя часть земной коры имеет термический градиент, равный 20–30 °С в расчете на 1 км глубины. Количество теплоты, содержащейся в земной коре до глубины 10 км (без учета температуры поверхности), равно приблизительно 12,6·1026 Дж. Эти ресурсы эквивалентны теплосодержанию 4,6·1016 т угля (принимая среднюю теплоту сгорания угля равной 27,6·109 Дж/т), что более чем в 70 тыс. раз превышает теплосодержание всех технически и экономически извлекаемых мировых ресурсов угля. Однако геотермальная теплота в верхней части земной коры слишком рассеяна, чтобы на ее базе решать мировые энергетические проблемы. Ресурсы, пригодные для промышленного использования, представляют собой отдельные месторождения геотермальной энергии, сконцентрированной на доступной для разработки глубине, имеющие определенные объемы и температуру, достаточные для использования их в целях производства электрической энергии или теплоты. Эти запасы геотермальной энергии по оценкам ученых составляют около 200 ГВт·ч, причем они распределены неравномерно, и основная их часть сосредоточена в районе Тихого океана.

С геологической точки зрения геотермальные энергоресурсы могут быть трех типов:

227

1)гидротермальные конвективные системы;

2)горячие сухие системы вулканического происхож-

дения;

3)системы с высоким тепловым потоком.

К гидротермальным конвективным системам относят подземные бассейны пара или горячей воды, которые выходят на поверхность земли, образуя гейзеры, сернистые и грязевые озера. Образование таких систем связано с наличием источника теплоты – горячей или расплавленной скальной породой, расположенной относительно близко к поверхности земли. Гидротермальные конвективные системы обычно размещаются по границам тектонических плит земной коры, которым свойственна вулканическая активность.

В принципе для производства электроэнергии на месторождениях с горячей водой применяется метод, основанный на использовании пара, образовавшегося при испарении горячей жидкости на поверхности. Этот метод использует то яв-

ление, что при приближении горячей воды (находящейся под высоким давлением) по скважинам из бассейна к поверхности давление падает и около 20 % жидкости вскипает и превращается в пар. Этот пар отделяется с помощью сепаратора от воды и направляется в турбину. Вода, выходящая из сепаратора, может быть подвергнута дальнейшей обработке в зависимости от ее минерального состава. Эту воду можно закачивать обратно в скальные породы сразу или, если это экономически оправдано, с предварительным извлечением из нее минералов.

Другим методом производства электроэнергии на базе высокоили среднетемпературных геотермальных вод явля-

ется использование процесса с применением двухконтурного

(бинарного) цикла. В этом процессе вода, полученная из бассейна, используется для нагрева теплоносителя второго контура (фреона или изобутана), имеющего низкую температуру кипения. Пар, образовавшийся в результате кипения этой

228

жидкости, используется для привода турбины. Отработавший пар конденсируется и вновь пропускается через теплообменник, создавая тем самым замкнутый цикл.

Кгорячим системам вулканического происхождения от-

носятся магма и непроницаемые горячие сухие породы. Использование этих энергетических ресурсов предусматривает устройство замкнутого контура с циркулирующей по нему жидкостью, проходящего через горячую породу. Сначала пробуривают скважину, достигающую области залегания горячей породы; затем через нее в породу под большим давлением закачивают холодную воду, что приводит к образованию

вней трещин. После этого через образованную таким образом зону трещиноватой породы пробуривают вторую скважину. Наконец, холодную воду с поверхности закачивают в первую скважину. Проходя через горячую породу, она нагревается, извлекается через вторую скважину в виде пара или горячей воды, которые затем можно использовать для производства электроэнергии одним из рассмотренных ранее способов. Проще говоря, геотермальные электростанции такого типа работают по следующей схеме: вода закачивается в глубокую скважину, проникает в трещины горячего гранита, нагревается и по другой скважине поднимается на поверхность земли. После этого горячая вода попадает в теплообменник, и полученная от нее энергия расходуется для получения горячей воды или пара для турбин.

Ксистемам с высоким тепловым потоком относят зоны с высокими значениями теплового потока, располагаемого

вглубокозалегающем осадочном бассейне. В таких бассейнах, как Парижский или Венгерский, температура воды, поступающая из скважин, может достигать 100 °С.

Геотермальная энергия может быть использована главным образом для выработки электроэнергии и для обогрева домов, учреждений и промышленных предприятий. Для

229

какой из этих целей она будет использоваться, зависит от формы, в которой она поступает в наше распоряжение.

Иногда вода вырывается из-под земли в виде чистого «сухого пара», т.е. пара без примеси водяных капелек. Этот сухой пар может быть непосредственно использован для вращения турбины и выработки электроэнергии.

В других местах, где имеется смесь воды с паром (влажный пар), этот пар отделяют от воды и затем используют для вращения турбин.

Наконец, в большинстве месторождений есть только горячая вода, и электрическую энергию здесь можно вырабатывать, пользуясь этой водой для перевода изобутана в парообразное состояние, с тем, чтобы этот изобутановый «пар» вращал турбины. Такой процесс, как уже отмечалось, относят к двухконтурному (бинарному) циклу. Горячей водой, естественно, можно также непосредственно обогревать жилища, общественные здания и предприятия (централизованное теплоснабжение).

Промышленное освоение геотермальных ресурсов началось после создания и пуска в Италии в 1916 году геотермальной электростанции (ГеоЭС) мощностью 7,5 МВт с тремя турбинами фирмы «Франко Този» мощностью по 2,5 МВт каждая. Однако широкое промышленное строительство ГеоЭС было развернуто только в 1960-х годах в США, Новой Зеландии, Японии, Исландии и некоторых других странах. К настоящему времени ГеоЭС используются в 58 странах.

Суммарная установленная мощность действующих на конец 2000 года ГеоЭС всех стран мира оценивается в 7,5 млн кВт. Наибольший прогресс в этой области достигнут в США, на Филиппинах, в Мексике, Италии, Японии, причем только на создание новых технологий за последние 20 лет затрачено около 2 млрд долл. США.

Использование низкотемпературной геотермальной энергии в мировой практике показывает, что большая ее

230

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]