Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
38
Добавлен:
26.03.2023
Размер:
53.74 Mб
Скачать

Chemical Reviews

pubs.acs.org/CR

Review

(446)Lu, C. H.; Willner, B.; Willner, I. DNA Nanotechnology: From

Sensing and DNA Machines to Drug-Delivery Systems. ACS Nano 2013, 7, 83208332.

(447)Zhang, Q.; Jiang, Q.; Li, N.; Dai, L. R.; Liu, Q.; Song, L. L.; Wang, J. Y.; Li, Y. Q.; Tian, J.; Ding, B. Q.; et al. DNA Origami as an in

Vivo Drug Delivery Vehicle for Cancer Therapy. ACS Nano 2014, 8, 66336643.

(448)Xiao, Z.; Ji, C.; Shi, J.; Pridgen, E. M.; Frieder, J.; Wu, J.; Farokhzad, O. C. DNA Self-Assembly of Targeted Near-Infrared-

Responsive Gold Nanoparticles for Cancer Thermo-Chemotherapy.

Angew. Chem., Int. Ed. 2012, 51, 1185311857.

(449)Roh, Y. H.; Lee, J. B.; Tan, S. J.; Kim, B.; Park, H.; Rice, E. J.;

Luo, D. Photocrosslinked DNA Nanospheres for Drug Delivery.

Macromol. Rapid Commun. 2010, 31, 12071211.

(450)Sun, H.; Zhu, X.; Lu, P. Y.; Rosato, R. R.; Tan, W.; Zu, Y.

Oligonucleotide Aptamers: New Tools for Targeted Cancer Therapy.

Mol. Ther.–Nucleic Acids 2014, 3, No. e182.

(451)Liu, J.; Song, L.; Liu, S.; Jiang, Q.; Liu, Q.; Li, N.; Wang, Z. G.;

Ding, B. A DNA-Based Nanocarrier for Efficient Gene Delivery and Combined Cancer Therapy. Nano Lett. 2018, 18, 33283334.

(452)Hu, Q.; Wang, S.; Wang, L.; Gu, H.; Fan, C. DNA Nanostructure-Based Systems for Intelligent Delivery of Therapeutic Oligonucleotides. Adv. Healthcare Mater. 2018, 7, 1701153.

(453)Zhang, P.; Cheng, F.; Zhou, R.; Cao, J.; Li, J.; Burda, C.; Min, Q.; Zhu, J. J. DNA-Hybrid-Gated Multifunctional Mesoporous Silica

Nanocarriers for Dual-Targeted and microRNA-Responsive Controlled Drug Delivery. Angew. Chem., Int. Ed. 2014, 53, 23712375.

(454)Zhang, J.; Guo, Y.; Ding, F.; Pan, G.; Zhu, X.; Zhang, C. A

Camptothecin-Grafted DNA Tetrahedron as a Precise Nanomedicine to Inhibit Tumor Growth. Angew. Chem., Int. Ed. 2019, 58, 1379413798.

(455)Taghdisi, S. M.; Danesh, N. M.; Ramezani, M.; Yazdian-Robati, R.; Abnous, K. A Novel AS1411 Aptamer-Based Three-Way Junction

Pocket DNA Nanostructure Loaded with Doxorubicin for Targeting Cancer Cells in Vitro and in Vivo. Mol. Pharmaceutics 2018, 15, 19721978.

(456)Zhang, H.; Ma, Y.; Xie, Y.; An, Y.; Huang, Y.; Zhu, Z.; Yang, C. J. A Controllable Aptamer-Based Self-Assembled DNA Dendrimer for High Affinity Targeting, Bioimaging and Drug Delivery. Sci. Rep. 2015, 5, 10099.

(457)Bi, S.; Dong, Y.; Jia, X.; Chen, M.; Zhong, H.; Ji, B. Self-

Assembled Multifunctional DNA Nanospheres for Biosensing and Drug Delivery into Specific Target Cells. Nanoscale 2015, 7, 73617367.

(458)Chang, M.; Yang, C. S.; Huang, D. M. Aptamer-Conjugated

DNA Icosahedral Nanoparticles as a Carrier of Doxorubicin for Cancer Therapy. ACS Nano 2011, 5, 61566163.

(459)Kim, H. J.; Kim, A.; Miyata, K.; Kataoka, K. Recent Progress in

Development of siRNA Delivery Vehicles for Cancer Therapy. Adv. Drug Delivery Rev. 2016, 104, 6177.

(460)Conway, J. W.; McLaughlin, C. K.; Castor, K. J.; Sleiman, H.

DNA Nanostructure Serum Stability: Greater Than the Sum of Its Parts. Chem. Commun. 2013, 49, 11721174.

(461)Hamblin, G. D.; Carneiro, K. M.; Fakhoury, J. F.; Bujold, K. E.; Sleiman, H. F. Rolling Circle Amplification-Templated DNA Nano-

tubes Show Increased Stability and Cell Penetration Ability. J. Am. Chem. Soc. 2012, 134, 28882891.

(462)Mei, Q.; Wei, X.; Su, F.; Liu, Y.; Youngbull, C.; Johnson, R.;

Lindsay, S.; Yan, H.; Meldrum, D. Stability of DNA Origami Nanoarrays in Cell Lysate. Nano Lett. 2011, 11, 14771482.

(463)Bujold, K. E.; Hsu, J. C. C.; Sleiman, H. F. Optimized DNA Nanosuitcasesfor Encapsulation and Conditional Release of siRNA.

J. Am. Chem. Soc. 2016, 138, 1403014038.

(464)Wang, Y.; You, Z.; Du, J.; Li, H.; Chen, H.; Li, J.; Dong, W.; He, B.; Mao, C.; Wang, G. Self-Assembled Triangular DNA Nanoparticles

are an Efficient System for Gene Delivery. J. Controlled Release 2016, 233, 126135.

(465)Li, H.; He, B.; Liu, X.; Li, J.; Liu, Q.; Dong, W.; Xu, Z.; Qian, G.; Zuo, H.; Hu, C.; et al. Regulation on Toll-like Receptor 4 and Cell

Barrier Function by Rab26 siRNA-loaded DNA Nanovector in Pulmonary Microvascular Endothelial Cells. Theranostics 2017, 7, 25372554.

(466)Liu, Q.; Wang, D.; Yuan, M.; He, B. F.; Li, J.; Mao, C.; Wang, G. S.; Qian, H. Capturing Intracellular Oncogenic microRNAs with Self-

Assembled DNA Nanostructures for microRNA-Based Cancer Therapy. Chem. Sci. 2018, 9, 75627568.

(467)You, Z.; Qian, H.; Wang, C.; He, B.; Yan, J.; Mao, C.; Wang, G.

Regulation of Vascular Smooth Muscle Cell Autophagy by DNA Nanotube-Conjugated mTOR siRNA. Biomaterials 2015, 67, 137150.

(468)Wang, D.; Liu, Q.; Wu, D.; He, B.; Li, J.; Mao, C.; Wang, G.; Qian, H. Isothermal Self-Assembly of Spermidine-DNA Nanostructure

Complex as a Functional Platform for Cancer Therapy. ACS Appl. Mater. Interfaces 2018, 10, 1550415516.

(469)Nahar, S.; Nayak, A. K.; Ghosh, A.; Subudhi, U.; Maiti, S.

Enhanced and Synergistic Downregulation of Oncogenic miRNAs by Self-Assembled Branched DNA. Nanoscale 2018, 10, 195202.

(470)Yin, H.; Kanasty, R. L.; Eltoukhy, A. A.; Vegas, A. J.; Dorkin, J.

R.; Anderson, D. G. Non-Viral Vectors for Gene-Based Therapy. Nat. Rev. Genet. 2014, 15, 541555.

(471)Luo, D.; Saltzman, W. M. Synthetic DNA Delivery Systems.

Nat. Biotechnol. 2000, 18, 3337.

(472)Wu, D.; Wang, L.; Li, W.; Xu, X.; Jiang, W. DNA Nanostructure-

Based Drug Delivery Nanosystems in Cancer Therapy. Int. J. Pharm. 2017, 533, 169178.

(473)Roh, Y. H.; Lee, J. B.; Kiatwuthinon, P.; Hartman, M. R.; Cha, J.

J.; Um, S. H.; Muller, D. A.; Luo, D. DNAsomes: Multifunctional DNABased Nanocarriers. Small 2011, 7, 7478.

(474)Jeong, E. H.; Jeong, H.; Jang, B.; Kim, B.; Kim, M.; Kwon, H.;

Lee, K.; Lee, H. Aptamer-Incorporated DNA Holliday Junction for the Targeted Delivery of siRNA. J. Ind. Eng. Chem. 2017, 56, 5561.

(475)Liu, J.; Li, Y.; Ma, D.; Ouyang, D.; Xi, Z. Flexible DNA Junction

Assisted Efficient Construction of Stable Gene Nanoparticles for Gene Delivery. Chem. Commun. 2016, 52, 19531956.

(476)Wu, T.; Liu, J.; Liu, M.; Liu, S.; Zhao, S.; Tian, R.; Wei, D.; Liu, Y.; Zhao, Y.; Xiao, H.; et al. A Nanobody-Conjugated DNA

Nanoplatform for Targeted Platinum Drug Delivery. Angew. Chem., Int. Ed. 2019, 58, 1422414228.

(477)Wu, C.; Han, D.; Chen, T.; Peng, L.; Zhu, G.; You, M.; Qiu, L.;

Sefah, K.; Zhang, X.; Tan, W. Building a Multifunctional AptamerBased DNA Nanoassembly for Targeted Cancer Therapy. J. Am. Chem. Soc. 2013, 135, 1864418650.

(478)Zhang, P.; Wang, C.; Zhao, J.; Xiao, A.; Shen, Q.; Li, L.; Li, J.; Zhang, J.; Min, Q.; Chen, J.; et al. Near Infrared-Guided Smart

Nanocarriers for microRNA-Controlled Release of Doxorubicin/ siRNA with Intracellular ATP as Fuel. ACS Nano 2016, 10, 36373647.

(479)Song, J.; Hwang, S.; Im, K.; Hur, J.; Nam, J.; Hwang, S.; Ahn, G. O.; Kim, S.; Park, N. Light-Responsible DNA HydrogelGold

Nanoparticle Assembly for Synergistic Cancer Therapy. J. Mater. Chem. B 2015, 3, 15371543.

(480)Song, J.; Im, K.; Hwang, S.; Hur, J.; Nam, J.; Ahn, G. O.; Hwang,

S.; Kim, S.; Park, N. DNA Hydrogel Delivery Vehicle for LightTriggered and Synergistic Cancer Therapy. Nanoscale 2015, 7, 94339437.

(481)Ma, Y.; Wang, Z.; Ma, Y.; Han, Z.; Zhang, M.; Chen, H.; Gu, Y. A Telomerase-Responsive DNA Icosahedron for Precise Delivery of

Platinum Nanodrugs to Cisplatin-Resistant Cancer. Angew. Chem., Int. Ed. 2018, 57, 53895393.

(482)Mou, Q.; Ma, Y.; Pan, G.; Xue, B.; Yan, D.; Zhang, C.; Zhu, X. DNA Trojan Horses: Self-Assembled Floxuridine-Containing DNA

Polyhedra for Cancer Therapy. Angew. Chem., Int. Ed. 2017, 56, 1252812532.

(483)Naldini, L. Gene Therapy Returns to Centre Stage. Nature

2015, 526, 351360.

(484) Zhu, X.; Lv, M. M.; Liu, J. W.; Yu, R. Q.; Jiang, J. H. DNAzyme Activated Protein-Scaffolded CRISPR-Cas9 Nanoassembly for Genome Editing. Chem. Commun. 2019, 55, 65116514.

9480

https://dx.doi.org/10.1021/acs.chemrev.0c00294

 

Chem. Rev. 2020, 120, 9420−9481

Chemical Reviews

pubs.acs.org/CR

Review

(485)Nishikawa, M.; Matono, M.; Rattanakiat, S.; Matsuoka, N.;

Takakura, Y. Enhanced Immunostimulatory Activity of Oligodeoxynucleotides by Y-Shape Formation. Immunology 2008, 124, 247255.

(486)Matsuoka, N.; Nishikawa, M.; Mohri, K.; Rattanakiat, S.; Takakura, Y. Structural and Immunostimulatory Properties of Y-shaped

DNA Consisting of Phosphodiester and Phosphorothioate Oligodeoxynucleotides. J. Controlled Release 2010, 148, 311316.

(487)Takahashi, Y.; Maezawa, T.; Araie, Y.; Takahashi, Y.; Takakura, Y.; Nishikawa, M. Vitro and in Vivo Stimulation of Toll-Like Receptor 9

by CpG Oligodeoxynucleotides Incorporated into Polypod-Like DNA Nanostructures. J. Pharm. Sci. 2017, 106, 24572462.

(488)Rattanakiat, S.; Nishikawa, M.; Funabashi, H.; Luo, D.; Takakura, Y. The Assembly of a Short Linear Natural Cytosine-

Phosphate-Guanine DNA into Dendritic Structures and Its Effect on Immunostimulatory Activity. Biomaterials 2009, 30, 57015706.

(489)Yang, G.; Koo, J. E.; Lee, H. E.; Shin, S. W.; Um, S. H.; Lee, J. Y. Immunostimulatory Activity of Y-shaped DNA Nanostructures Mediated through the Activation of TLR9. Biomed. Pharmacother. 2019, 112, 108657.

(490)Mohri, K.; Kusuki, E.; Ohtsuki, S.; Takahashi, N.; Endo, M.; Hidaka, K.; Sugiyama, H.; Takahashi, Y.; Takakura, Y.; Nishikawa, M. Self-Assembling DNA Dendrimer for Effective Delivery of Immunos-

timulatory CpG DNA to Immune Cells. Biomacromolecules 2015, 16, 10951101.

(491)Nishikawa, M.; Ogawa, K.; Umeki, Y.; Mohri, K.; Kawasaki, Y.; Watanabe, H.; Takahashi, N.; Kusuki, E.; Takahashi, R.; Takahashi, Y.; et al. Injectable, Self-Gelling, Biodegradable, and Immunomodulatory

DNA Hydrogel for Antigen Delivery. J. Controlled Release 2014, 180, 2532.

(492)Nishida, Y.; Ohtsuki, S.; Araie, Y.; Umeki, Y.; Endo, M.; Emura, T.; Hidaka, K.; Sugiyama, H.; Takahashi, Y.; Takakura, Y.; et al. Self-

Assembling DNA Hydrogel-Based Delivery of Immunoinhibitory Nucleic Acids to Immune Cells. Nanomedicine 2016, 12, 123130.

(493)Umeki, Y.; Mohri, K.; Kawasaki, Y.; Watanabe, H.; Takahashi, R.; Takahashi, Y.; Takakura, Y.; Nishikawa, M. Induction of Potent Antitumor Immunity by Sustained Release of Cationic Antigen from a

DNA-Based Hydrogel with Adjuvant Activity. Adv. Funct. Mater. 2015, 25, 57585767.

(494)Qu, Y.; Yang, J.; Zhan, P.; Liu, S.; Zhang, K.; Jiang, Q.; Li, C.; Ding, B. Self-Assembled DNA Dendrimer Nanoparticle for Efficient

Delivery of Immunostimulatory CpG Motifs. ACS Appl. Mater. Interfaces 2017, 9, 2032420329.

(495)Shao, Y.; Sun, Z. Y.; Wang, Y.; Zhang, B. D.; Liu, D.; Li, Y. M. Designable Immune Therapeutical Vaccine System Based on DNA

Supramolecular Hydrogels. ACS Appl. Mater. Interfaces 2018, 10, 93109314.

(496)Yuan, Y.; Gu, Z.; Yao, C.; Luo, D.; Yang, D. Y. Nucleic AcidBased Functional Nanomaterials as Advanced Cancer Therapeutics. Small 2019, 15, 1900172.

(497)Li, F.; Tang, J.; Geng, J.; Luo, D.; Yang, D. Polymeric DNA Hydrogel: Design, Synthesis and Applications. Prog. Polym. Sci. 2019, 98, 101163.

(498)Jin, J.; Xing, Y.; Xi, Y.; Liu, X.; Zhou, T.; Ma, X.; Yang, Z.; Wang,

S.; Liu, D. A Triggered DNA Hydrogel Cover to Envelop and Release Single Cells. Adv. Mater. 2013, 25, 47144717.

(499)Wang, Y.; Shao, Y.; Ma, X.; Zhou, B.; Faulkner-Jones, A.; Shu, W.; Liu, D. Constructing Tissuelike Complex Structures Using Cell-

Laden DNA Hydrogel Bricks. ACS Appl. Mater. Interfaces 2017, 9, 1231112315.

(500)Sabir, T.; Schroder, G. F.; Toulmin, A.; McGlynn, P.; Magennis,

S. W. Global Structure of Forked DNA in Solution Revealed by HighResolution Single-Molecule FRET. J. Am. Chem. Soc. 2011, 133, 11881191.

(501)Lilley, D. M. J. Structures of Helical Junctions in Nucleic Acids.

Q. Rev. Biophys. 2000, 33, 109159.

(502)Boer, D. R.; Kerckhoffs, J. M.; Parajo, Y.; Pascu, M.; Uson, I.;

Lincoln, P.; Hannon, M. J.; Coll, M. Self-Assembly of Functionalizable Two-Component 3D DNA Arrays through the Induced Formation of

DNA Three-Way-Junction Branch Points by Supramolecular Cylinders. Angew. Chem., Int. Ed. 2010, 49, 23362339.

(503)Tang, J. P.; Yao, C.; Gu, Z.; Jung, S. W.; Luo, D.; Yang, D. Y. Super-Soft and Super-Elastic DNA Robot with Magnetically Driven

Navigational Locomotion for Cell Delivery in Confined Space. Angew. Chem., Int. Ed. 2020, 59, 24902495.

(504)Wei, S. X.; Lu, W.; Le, X. X.; Ma, C. X.; Lin, H.; Wu, B. Y.; Zhang, J. W.; Theato, P.; Chen, T. Bioinspired Synergistic

Fluorescence-Color-Switchable Polymeric Hydrogel Actuators.

Angew. Chem., Int. Ed. 2019, 58, 1624316251.

(505)Fu, F. F.; Shang, L. R.; Chen, Z. Y.; Yu, Y. R.; Zhao, Y. J. Bioinspired Living Structural Color Hydrogels. Sci. Robot. 2018, 3, No. eaar8580.

(506)Li, F.; Zhang, X.; Hu, S. X.; Lv, Z. Y.; Lv, J. G.; Yu, W. T.; Xu, X. H.; Yang, D. Y. Bioinspired Mechanically Responsive Hydrogel upon

Redox Mediated by Dynamic Coordination between Telluroether and Platinum Ions. Chem. Mater. 2020, 32, 21562165.

(507)Ma, Q. M.; Zhang, M.; Xu, X. H.; Meng, K.; Yao, C.; Zhao, Y. F.; Sun, J.; Du, Y. P.; Yang, D. Y. Multiresponsive Supramolecular

Luminescent Hydrogels Based on a Nucleoside/Lanthanide Complex.

ACS Appl. Mater. Interfaces 2019, 11, 4740447412.

(508)Xue, J.; Xu, X.; Zhu, Y.; Yang, D. Lanthanide Based White- Light-Emitting Hydrogel Mediated by Fluorescein and Carbon Dots

with High Quantum Yield and Multi-Stimuli Responsiveness. J. Mater. Chem. C 2020, 8, 33803385.

(509)Meng, K.; Yao, C.; Ma, Q.; Xue, Z.; Du, Y.; Liu, W.; Yang, D. A Reversibly Responsive Fluorochromic Hydrogel Based on LanthanideMannose Complex. Adv. Sci. 2019, 6, 1802112.

(510)Kurokawa, C.; Fujiwara, K.; Morita, M.; Kawamata, I.; Kawagishi, Y.; Sakai, A.; Murayama, Y.; Nomura, S. M.; Murata, S.;

Takinoue, M.; et al. DNA Cytoskeleton for Stabilizing Artificial Cells.

Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 72287233.

(511)van Esch, J. H.; Klajn, R.; Otto, S. Chemical Systems out of Equilibrium. Chem. Soc. Rev. 2017, 46, 54745475.

(512)Merindol, R.; Walther, A. Materials Learning from Life:

Concepts for Active, Adaptive and Autonomous Molecular Systems.

Chem. Soc. Rev. 2017, 46, 55885619.

9481

https://dx.doi.org/10.1021/acs.chemrev.0c00294

 

Chem. Rev. 2020, 120, 9420−9481