Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

YpKBnaq101

.pdf
Скачиваний:
2
Добавлен:
15.04.2023
Размер:
993.62 Кб
Скачать

При преобразовании любых видов океанической энергии неминуемы определенные изменения естественного состояния затрагиваемых экосистем. К отрицательным последствиям работы установок, использующих термальную энергию океана, можно отнести возможные утечки в океан аммиака, пропана или фреона, а также веществ, применяемых для промывки теплообменников (хлор и др.). Возможно значительное выделение углекислого газа из поднимаемых на поверхность холодных глубинных вод из-за снижения в них парциального давления СО2 и повышения температуры, Выделение СО2 из воды при работе океанических ТЭС предположительно на 30% больше, чем при работе обычных ТЭС той же мощности, использующих органическое топливо. Охлаждение вод океана вызывает увеличение содержания питательных веществ в поверхностном слое и значительный рост фитопланктона. При подъеме к поверхности глубинные микроорганизмы будут загрязнять океан и придется применять специальные меры для его очистки.

Строительство ПЭС сказывается неблагоприятно на состоянии прибрежных земель, самого побережья и аквальной вдольбереговой полосы: изменяются условия подтопления, засоления, размыва берегов, формирование пляжей и т. д. Изменение движения грунтовых вод влияет на динамику засоления прибрежных земель.

На ПЭС в КНР изучены закономерности отложения наносов в водохранилище ПЭС и за плотиной, а также мероприятия по борьбе с ними. Эксплуатация ПЭС «Ране» во Франции показала, что принятая в ее проекте однобассейновая схема двухстороннего действия максимально сохраняет природный цикл колебаний бассейна и гарантирует тем самым экологическую безопасность приливной энергии.

Использование энергии волн на глубоководных местах в открытом океане сказывается на процессах в акватории океана. Преобразователи размещаются далеко от берега и не оказывают отрицательного действия на устойчивость побережья.

При установке преобразователей вблизи побережья возникают проблемы эстетического характера, так как они видны с берега. Цепочка устройств типа ныряющих уток Солтера длиной в несколько километров выглядит эстетически менее привлекательно, чем группа продуманно размещенных отдельно стоящих преобразователей энергии. Кроме того, непрерывная линия преобразователей в отличие от отдельно расположенных установок может стать препятствием для навигации и оказаться опасной для судов во время сильных штормов.

Один из важных вопросов влияния на окружающую среду преобразования энергии волн в прибрежной зоне – это воздействие на процессы в ее пределах. Вещества, перемещаемые волнами, называются прибрежными наносами. Движение их необходимо для стабилизации береговой полосы, т. е. баланса между эрозией и отложениями. В связи с

61

этим цепь из преобразователей энергии волн целесообразно устанавливать в местах намечаемых волноломов, чтобы они выполняли двойную функцию: использование энергии волн и защиту побережья.

Неблагоприятные экологические последствия в гидротермальной

энергетике:

утечки в океан аммиака, фреона, хлора и др.;

выделение СО2 из воды;

изменение циркуляции вод, появление региональных и биологических аномалий под воздействием гидродинамических и тепловых возмущений;

изменение климата.

Неблагоприятные экологические последствия в приливной

энергетики:

периодическое затопление прибрежных территорий, изменение землепользования в районе ПЭС, флоры и фауны акватории;

строительное замутнение воды, поверхностные сбросы загрязненных вод.

Неблагоприятные экологические последствия в волновой

энергетике:

эрозия побережья, смена движения прибрежных песков;

значительная материалоемкость;

изменение сложившихся судоходных путей вдоль берегов;

загрязнение воды в процессе строительства, поверхностные сбросы.

6. Экологическая характеристика использования биоэнергетических установок.

Биоэнергетические станции по сравнению с традиционными электростанциями и другими НВИЭ являются наиболее экологически безопасными. Они способствуют избавлению окружающей среды от загрязнения всевозможными отходами. Так, например, анаэробная ферментация – эффективное средство не только реализации отходов животноводства, но и обеспечения экологической чистоты, так как твердые органические вещества теряют запах и становятся менее привлекательными для грызунов и насекомых (в процессе перегнивания разрушаются болезнетворные микроорганизмы). Кроме того, образуются дополнительный корм для скота (протеин) и удобрения.

62

Городские стоки и твердые отходы, отходы при рубках леса и деревообрабатывающей промышленности, представляя собой возможные источники сильного загрязнения природной среды, являются в то же время сырьем для получения энергии, удобрений, ценных химических веществ. Поэтому широкое развитие биоэнергетики эффективно в экологическом отношении. Однако неблагоприятные воздействия на объекты природной среды при энергетическом использовании биомассы имеют место. Прямое сжигание древесины дает большое количество твердых частиц, органических компонентов, окиси углерода и других газов. По концентрации некоторых загрязнителей они превосходят продукты сгорания нефти и ее производных. Другим экологическим последствием сжигания древесины являются значительные тепловые потери.

По сравнению с древесиной биогаз – более чистое топливо, непроизводящее вредных газов и частиц. Вместе с тем необходимы меры предосторожности при производстве и потреблении биогаза, так как метан взрывоопасен. Поэтому при его хранении, транспортировке и использовании следует осуществлять регулярный контроль для обнаружения и ликвидации утечек.

При ферментационных процессах по переработке биомассы в этанол образуется большое количество побочных продуктов (промывочные воды и остатки перегонки), являющихся серьезным источником загрязнения среды, поскольку их вес в несколько раз (до 10) превышает вес этилового спирта.

Лекция 6. Современные высокоэффективные автономные энергосберегающие системы отопления.

Российская практика показывает, что вместо того, чтобы сокращать издержки, внедряя современное энергосберегающее оборудование, реформу ЖКХ пытаются свести лишь к увеличению тарифов.

Холода, обрушившиеся на Россию зимой 2005/2006 гг., как лакмусовая бумажка проявили критическое состояние систем отопления. Износ магистральных теплотрасс увеличивается с каждым годом. И если в Москве в межотопительный сезон могут перекладывать сто километров теплотрасс, то в большинстве регионов средств хватает только на латание дыр. Разрушающиеся теплотрассы отапливают улицу, а не дома. Затраты же на отопление улиц коммунальщики перекладывают на конечного потребителя. Установка тепловых счетчиков даст лишь временную передышку. После того, как большинство потребителей установят счетчики, теплопроизводящие компании обязательно повысят тарифы,

63

чтобы компенсировать свои потери в теплотрассах. При этом рост тарифов не уменьшает вероятность остаться без тепла в пик морозов.

Похожая ситуация сложилась на многих крупных предприятиях. Построенные в советское время централизованные заводские котельные уже по нескольку раз выработали свой ресурс. Внутризаводские теплотрассы обветшали. Перепрофилирование производственных помещений вызывает необходимость изменения схем их отопления. В результате приватизации многие заводы разделены на несколько независимых частей, при этом централизованная котельная остается в собственности одного юридического лица. В такой ситуации местный монополист не только может, а реально в большинстве случаев, увеличивает в несколько раз тарифы на отопление.

Проблема модернизации систем отопления возникает у организаций получивших в наследство объекты, ранее принадлежавшие российской армии. Так как при строительстве этих объектов у армейских чиновников не было проблем с мазутом и дизельным топливом, а было требование по обеспечению автономности отопления, многие объекты обогревались котлами на жидком топливе. Многократный рост цен на нефть и нефтепродукты на практике подтверждает мысль Д.И. Менделеева о том, что: «Топить нефтью – все равно, что топить ассигнациями».

Решить задачу экономичного обогрева можно только координально изменив подход к созданию систем отопления, перейдя к децентрализованным системам, использующим электроэнергию на создание вихревых кавитационных процессов, в результате которых выделяется гораздо больше тепла, чем при прямом нагреве теплоносителя. Такие системы позволят отказаться от теплотрасс, а, следовательно, резко сократят как расходы на их содержание, так и теплопотери.

Созданные относительно недавно тепловые установки на основе «вихревых теплогенераторов» затрачивают на обогрев в три - пять раз меньше электроэнергии, чем ТЭНовые котлы. В соответствии с Федеральным Законом об энергосбережении № 28 ФЗ от 03.04.96 г., при мощности установки менее 100 кВт, строительство и эксплуатация энергетических установок осуществляется без лицензии. Так как в «вихревых теплогенераторах» электроэнергия используется для работы электродвигателя, а не для прямого нагрева теплоносителя, и по технической классификации они относятся к насосному оборудованию, на них не распространяются повышенные тарифы на электроэнергию.

Проиллюстрировать экономическую целесообразность перехода на обогрев с помощью «вихревых теплогенераторов» можно несколькими примерами.

64

Производственные помещения ООО «Пластимекс М» г. Рошаль Московской области представляют собой кирпичные постройки общим объемом 20 433 м3. Общий вид заводского корпуса показан на фото 1.

Фото 1. Производственные помещения ООО «Пластимекс М» г. Рошаль Московской обл.

По проекту 1986 года максимальный часовой расход тепла на отопление должен был составлять 9,96 Гкал/час. В 1998 году была проведена корректировка проекта. Скорректированный максимальный часовой расход тепла на отопление составил 2,4 Гкал/час. При стоимости 1 Гкал – 580 рублей, при использовании централизованного отопления затраты на отопление должны были составить:

2,4 [Гкал/час] x 24 час x 180 дней 580 руб. = 6013440 руб.

На заводе был смонтирован тепловой узел из трех тепловых установок мощностью по 75 кВт каждая. Две установки работали, одна находилась в холодном резерве. За отопительный сезон 2004/2005 г.г., при стоимости электроэнергии 1,65 руб. за 1 кВт/час, на отопление было потрачено всего 450000 рублей, что не на проценты, а на порядок меньше.

Другой пример. Затраты на отопление складского комплекса объемом 22000 м3 ООО «Рубеж», г. Лыткарино Московской области, в сезон 2004-2005 г.г. составили 75000 рублей. Отзыв о фактических затратах показан на фото 2. Соседние организации отапливали аналогичные помещения с помощью жидкотопливных котлов и затратили на отопление около одного миллиона рублей. Результат оказался настолько впечатляющим, что три близлежащие организации отказались от жидкотопливных котлов и приобрели тепловые установки. Проявила интерес к новому методу отопления и администрация г. Лыткарино. В настоящее время ведется проработка вопроса о пилотном проекте отопления и горячего водоснабжения одного из кварталов города. При использовании тепловых установок для горячего водоснабжения отпадет необходимость в летних поездках к друзьям и родственникам на помывку.

65

Лекция 7. Основы энергосбережения в системах электроснабжения.

1. Основные организационные и технические мероприятия энергосбережения. 2. Основные мероприятия энергосбережения в системах электроснабжения предприятии. 3. Основы экономии

электроэнергии при проектировании и эксплуатации электроустановок. 4 Энергосбережение в зданиях и сооружениях. 5 Тепловая изоляция трубопроводов, зданий и сооружений. 6. Изоляционные характеристики остекления и стеклопакеты. 7. Повышение эффективности систем отопления. 8. Автономные энергоустановки. 9. Бытовые приборы регулирования и учета потребляемых энергоресурсов. 10. Эффективное использование электробытовых приборов.

1. Основные организационные и технические мероприятия

энергосбережения.

В системы электроснабжения предприятия входят электрические сети напряжением 0,4 кВ, 6 или 10 кВ, понижающие трансформаторы, электродвигатели, электропривод, осветительные комплексы, системы автоматизации и др.

Вопросы сбережения и экономии электроэнергии содержат организационные и технические мероприятия.

Организационные мероприятия включают:

разработку планов потребления электроэнергии и удельных норм ее расходования;

упорядочение потребления электроэнергии в электросиловых установках;

поддержание рационального режима пользования электроосвещением;

учет расхода электроэнергии;

правильность взаиморасчетов с энергосберегающими организациями и сторонними потребителями;

подведение итогов работы по экономии электроэнергии.

Технические мероприятия включают:

снижение потерь электроэнергии в сетях и линиях электропередачи;

реконструкцию сетей без изменения напряжений;

перевод сетей на повышенное напряжение;

включение под нагрузку резервных линий электропередачи;

снижение потерь в силовых трансформаторах;

66

применение экономически целесообразного режима одновременной работы трансформаторов.

Основные энергосберегающие направления в электроэнергетике:

рациональный выбор мощности электродвигателей, приводов механизмов и трансформаторов, при которых обеспечиваются высокие коэффициенты мощности и коэффициенты полезного действия;

автоматизация электроприводов и осветительных сетей, направленных на экономное расходование электроэнергии;

применение частотно-регулируемого электропривода на механизмах с переменной производительностью;

разработка производственно-технологических процессов с учетом норм расхода электроэнергии.

2. Основные мероприятия энергосбережения в системах электроснабжения предприятии.

Энергосбережение в системах электроснабжения предприятия включает следующие основные мероприятия.

1.Модернизация систем возбуждения синхронных двигателей (СД) путем замены аналоговых на цифровые возбудительные устройства (ЦВУ). ЦВУ позволяют повысить надежность возбудителя, улучшить условия пуска СД, обеспечивают оперативный анализ работы СД в переходных и нагрузочных режимах, обеспечить защиту от неправильных действий персонала, снизить потери в примыкающей сети, повысить статическую и динамическую устойчивость работы СД.

2.Применение гидродинамических муфт (ГМД) для регулирования производительности синхронных двигателей, что позволяет экономить до 15 % электроэнергии, повысить качество регулирования параметров технологических процессов, повысить срок службы, пуск двигателя без нагрузки.

3.Установка полупроводниковых пусковых устройств для синхронных двигателей.

4.Использование современных осветительных комплексов с металлогалогенными лампами. Замена ламп ДРЛ-400 на лампы НЛВД-300. Замена ламп накаливания на компактные люминесцентные Е-27.

5.Внедрение современных автоматизированных систем коммерческого учета энергоресурсов на базе микропроцессорной техники.

67

6.Внедрение частотно-регулируемого электропривода и систем автоматического регулирования на основном и вспомогательном оборудовании.

7.Оптимизация режимов работы систем электроснабжения по реактивной мощности путем автоматического регулирования возбуждения синхронных двигателей и автоматического включения батарей статических конденсаторов.

8.Применение современных высокотехнологичных уплотняющих материалов для электрических насосов.

9.Автоматизация управления освещением путем установки фотореле, а также регулярная (по графику) очистка светильников.

3. Основы экономии электроэнергии при проектировании и эксплуатации электроустановок.

Основные пути экономии электроэнергии при проектировании и эксплуатации электроустановок строительных площадок, предприятий и коммунально-бытовых сооружений включают организационные мероприятия, нормирование расходов электроэнергии, контроль потребления электроэнергии. Наряду с организационными мероприятиями по экономии электроэнергии, сбережение энергоресурсов достигается за счет технических мероприятий, осуществляемых в процессе проектирования, монтажа и эксплуатации электроустановок.

Экономия электроэнергии при проектировании и монтаже может быть достигнута путем снижения ее потерь:

в сетях – за счет рационального выбора сечений проводов; приме нения способов соединения, обладающих малыми переходными сопротивлениями; равномерного распределения нагрузки по фазам;

в электрических приводах – за счет оптимального (по коэффициенту загрузки) выбора мощности электрических машин; установки автоматических ограничителей холостого хода электрических машин;

в трансформаторах – за счет их оптимальной загрузки; обеспечения возможности создания экономичных режимов для параллельно работающих трансформаторов;

в компрессорных установках – за счет регулирования производительности компрессора при колебаниях расхода сжатого воздуха; автоматизацией открытия всасывающих клапанов; использованием компрессоров с малым номинальным рабочим давлением; подогревом сжатого воздуха перед приемниками; осуществлением резонансного

68

наддува поршневых воздушных компрессоров, заменой (там, где это целесообразно) пневматического инструмента на электроинструмент;

в насосных установках – за счет автоматизации работы насосных агрегатов и применения насосов с высоким КПД;

в вентиляционных установках – за счет автоматизации и применения экономичных вентиляторов; внедрения экономичных способов регулирования производительности; блокировки вентиляторов тепловых завес с устройствами открывания и закрывания ворот;

в осветительных электроустановках – за счет правильного выбора типа ламп и светильников; применения различных устройств автоматического включения и отключения светильников; поддержания номинального уровня напряжения

в сети.

Экономия электроэнергии при эксплуатации электроустановок может быть достигнута за счет:

контроля работы сети и своевременности включения резервных линий, а также за равномерностью нагрузки по фазам;

ведения экономичного режима работы трансформаторов;

увеличения нагрузки рабочих технологических машин;

установки ограничителей холостого хода на крупных электромашинах;

выявления и замены ненагруженных электродвигателей

электродвигателями меньшей мощности.

При эксплуатации компрессоров экономия электроэнергии достигается применением резонансного наддува поршневых воздушных компрессоров, систематического контроля утечек сжатого воздуха, отключения участков или всей сети сжатого воздуха в нерабочее время.

При эксплуатации насосных установок экономия электроэнергии обеспечивается за счет улучшения загрузки насосов и совершенствования регулирования их работы, сокращения расхода и потерь воды.

При эксплуатации вентиляционных установок экономия электроэнергии обеспечивается за счет замены старых вентиляторов новыми; внедрения современных способов регулирования производительности вентиляторов; внедрения автоматического управления установками.

При эксплуатации осветительных установок экономия электроэнергии достигается за счет замены светильников с лампами накаливания на светильники с газоразрядными лампами; своевременной очистки ламп и светильников; поддержания номинального уровня

69

напряжения в сети; автоматизации управления осветительными установками.

При эксплуатации станков, имеющих межоперационное время (время холостого хода) более 10 с, сбережение электроэнергии обеспечивается за счет применения ограничителей холостого хода. Когда межоперационное время менее 10 с, вопрос об эффективности ограничителей холостого хода решается путем контрольного расчета.

При эксплуатации незагруженных электродвигателей экономия электроэнергии достигается за счет замены электродвигателями меньшей мощности. Если средняя нагрузка электродвигателя составляет менее 45 % номинальной мощности, то замена его менее мощным электродвигателем всегда целесообразна. При нагрузке электродвигателя более 70 % номинальной мощности можно считать, что замена его нецелесообразна. При нагрузке электродвигателя в пределах от 45до 70 % номинальной мощности целесообразность его замены должна быть подтверждена уменьшением суммарных потерь активной мощности в электрической системе и в электродвигателе.

4.Энергосбережение в зданиях и сооружениях.

Внастоящее время расходы на отопление становятся очень высокими, а это приводит к увеличению теплового загрязнения окружающей среды, атмосферы, перерасходу драгоценного топлива. Те, кто сэкономил на теплоизоляции дома, несут в последующем неизмеримо большие расходы на отопление. Можно привести множество примеров, которые подтверждают этот факт. Здания всех типов являются крупнейшими потребителями энергии (около 30-40 % потребления в России). По уровню потребления энергоресурсов с ними может сравниться только промышленный сектор.

По оценкам как отечественных, так и зарубежных экспертов,

потенциал экономии электроэнергии в зданиях и сооружениях равен 3040 %, а тепловой энергии – около 50 %.

Типовая структура расхода тепловой энергии зданием, а также потенциал энергосбережения приведены на рис. 1:

70

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]