Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

5787

.pdf
Скачиваний:
0
Добавлен:
21.11.2023
Размер:
666.66 Кб
Скачать

10

Мощные ядерные силы не дают альфа-частице просто так вылететь из ядра. Она мечется внутри ядра, делая много попыток вылететь наружу, но каждый раз ядерные силы заворачивают ее обратно. Стрелка «туда-сюда» показывает эти неудачные попытки. И только спустя очень много таких циклов альфа-частица туннелирует, оказывается вдруг за пределами действия ядерных сил и улетает прочь из-за электростатического отталкивания. Изображение с сайта scienceblogs.com, с изменениями

По счастью, в квантовой механике частицы не локализованы, а немножко размазаны в пространстве. Поэтому с какой-то пусть очень маленькой, но всё же ненулевой вероятностью альфа-частица рано или поздно сможет оказаться по ту сторону барьера. Частица туннелирует, проходит потенциальный барьер насквозь, несмотря на то, что ей не хватает энергии переползти этот барьер поверху. И вот теперь, наконец-то оказавшись по ту сторону барьера, частица чувствует только электрическое отталкивание и с удовольствием улетает прочь.

Тот же туннельный эффект, что на прошлом рисунке, но теперь в виде графика. Здесь на обоих рисунках показана потенциальная энергия альфа-частицы внутри и вблизи ядра. Вверху: упрощенное изображение альфа-частицы как маленькой компактной частички материи. Внизу: более точное изображение альфа-частицы в виде квантовой волны, которая просачивается сквозь потенциальный барьер наружу. На фотографии Георгий Гамов, впервые описавший альфа-распад как квантовый туннельный эффект.

11

Время жизни ядра, готового к альфа-распаду, определяется свойствами этого барьера. Чем выше и шире барьер, тем меньше вероятность просочиться наружу, а значит, тем дольше придется ждать для того, чтобы альфа-распад произошел. В одних случаях барьер очень труднопреодолимый, и время жизни ядра получается безумно большим, вплоть до миллиардов лет. В других случаях барьер оказывается хиленьким, и распад происходит очень быстро. Например, самое простое ядро, способное испытывать альфа-распад — бериллий-8, 8Be — содержит четыре протона и четыре нейтрона, и потому оно с огромным удовольствием распадается на две альфа-частицы. Его время жизни было измерено полвека назад и составляет 10−16 с = 100 ас. Заметьте, что это хоть и быстрый распад, но по ядерным масштабам он всё-таки занимает порядка миллиона типичных ядерных циклов.

Между прочим, тот факт, что ядро 8Be настолько нестабильно, имеет огромное значение для синтеза химических элементов во Вселенной и в конечном итоге — для жизни! В недрах звезд водород постепенно сгорает и превращается в гелий. Ядра гелия, альфачастицы, постоянно летают, сталкиваются друг с другом и время от времени образуют бериллий-8. Если бы это ядро было стабильным или хотя бы долгоживущим, то на него быстро налипли бы новые альфа-частицы, получился бы углерод, азот и так далее. Иными словами, весь гелий бы очень быстро выгорел. В реальности же 8Be распадается столь быстро, что редко когда в него успевает воткнуться еще одна альфа-частица. Именно поэтому гелий в звездах так просто не горит. Лишь на очень поздних этапах, когда давление в звезде повышается, процесс тройного превращения альфа-частиц в углерод через промежуточный бериллий-8 запускается на полную катушку.

Бета-распад

Бета-распад (β-распад), радиоактивный распад атомного ядра, сопровождающийся вылетом из ядра электрона или позитрона. Этот процесс обусловлен самопроизвольным превращением одного из нуклонов ядра в нуклон другого рода, а именно: превращением либо нейтрона (n) в протон (p), либо протона в нейтрон. В первом случае из ядра вылетает электрон (е-) — происходит так называемый β--распад. Во втором случае из ядра вылетает позитрон (е+) — происходит β+-распад. Вылетающие при Б.-р. электроны и позитроны носят общее название бета-частиц. Взаимные превращения нуклонов сопровождаются появлением ещё одной частицы — нейтрино (ν) в случае β+-распада или антинейтрино

12

- в случае β--распада. При β--распаде число протонов (Z) в ядре увеличивается на единицу, а число нейтронов уменьшается на единицу. Массовое число ядра А, равное общему числу нуклонов в ядре, не меняется, и ядропродукт представляет собой изобар исходного ядра, стоящий от него по соседству справа в периодической системе элементов. Наоборот, при β+-распаде число протонов уменьшается на единицу, а число нейтронов увеличивается на единицу и образуется изобар, стоящий по соседству слева от исходного ядра. Символически оба процесса Б.-р. записываются в следующем виде:

где —Z нейтронов.

Простейшим примером (β--распада является превращение свободного нейтрона в протон с испусканием электрона и антинейтрино (период полураспада нейтрона ≈ 13 мин):

Более сложный пример (β--распада — распад тяжёлого изотопа водорода — трития, состоящего из двух нейтронов (n) и одного протона (p):

Очевидно, что этот процесс сводится к β--распаду связанного (ядерного) нейтрона. В этом случае β-радиоактивное ядро трития превращается в ядро следующего в периодической таблице элемента — ядро лёгкого изотопа гелия 32Не.

Примером β+-распада может служить распад изотопа углерода 11С по следующей схеме:

Этот процесс можно представить как распад связанного протона

В этом случае ядро углерода превращается в ядро предшествующего ему в периодической таблице элемента — бора.

Превращение протона в нейтрон внутри ядра может происходить и в результате захвата протоном одного из электронов с электронной оболочки атома.

Чаще всего происходит захват электрона +-распаде, образуется изобар, стоящий

13

в периодической системе элементов слева от исходного ядра. Уравнение К-захвата имеет вид:

После захвата К-электрона на освободившееся место переходят электроны с более высоких оболочек; при этом испускается фотон. Т. о., К-захват сопровождается испусканием характеристического рентгеновского излучения. Примером К-захвата может служить реакция, при которой ядро изотопа бериллия захватывает К-электрон и превращается в ядро лития:

Б.-р. наблюдается как у естественно-радиоактивных, так и у искусственнорадиоактивных изотопов. Для того чтобы ядро было неустойчиво по отношению к одному из типов β-превращения (т. е. могло испытать Б.-р.), сумма масс частиц в левой части уравнения реакции должна быть больше суммы масс продуктов превращения. Поэтому при Б.-р. происходит выделение энергии. Энергию Б.-р. Еβ можно вычислить по этой разности масс, пользуясь соотношением Е = mc2, где с — скорость света в вакууме. В случае β-распада

где М — массы нейтральных атомов. В случае β+-распада нейтральный атом теряет один из электронов в своей оболочке, энергия Б.-р. равна:

где me — масса электрона.

Энергия Б.-р. распределяется между тремя частицами: электроном (или позитроном), антинейтрино (или нейтрино) и ядром; каждая из лёгких частиц может уносить практически любую энергию от 0 до Eβ т. е. их энергетические спектры являются сплошными. Лишь при К-захвате нейтрино уносит всегда одну и ту же энергию.

Итак, при β--распаде масса исходного атома превышает массу конечного атома, а при β+-распаде это превышение составляет не менее двух электронных масс.

Исследование Б.-р. ядер неоднократно ставило учёных перед неожиданными загадками. После открытия радиоактивности явление Б.-р. долгое время рассматривалось как аргумент в пользу наличия в атомных ядрах электронов; это предположение оказалось в явном противоречии с квантовой механикой (см. Ядро атомное). Затем непостоянство энергии электронов, вылетающих при Б.-р., даже породило у некоторых физиков неверие в закон сохранения энергии, т.к. было известно, что в этом превращении участвуют ядра, находящиеся в состояниях с вполне определённой энергией. Максимальная энергия вылетающих из ядра электронов как раз равна разности энергий начального и конечного ядер. Но в таком случае было непонятно, куда исчезает энергия, если вылетающие электроны несут меньшую энергию. Предположение немецкого учёного В. Паули о существовании новой частицы — нейтрино — спасло не только закон сохранения энергии, но и другой важнейший закон физики — закон сохранения момента количества движения. Поскольку Спины (т. е. собственные моменты) нейтрона и протона равны 1/2, то для сохранения спина в правой части уравнений Б.-р. может находиться лишь нечётное число частиц со спином 1/2. В частности, при β--распаде

14

свободного нейтрона n → p + e- + ν только появление антинейтрино исключает нарушение закона сохранения момента количества движения.

Б.-р. имеет место у элементов всех частей периодической системы. Тенденция к β-превращению возникает вследствие наличия у ряда изотопов избытка нейтронов или протонов по сравнению с тем количеством, которое отвечает максимальной устойчивости. Т. о., тенденция к β+-распаду или К-захвату характерна для нейтронодефицитных изотопов, а тенденция к β--распаду — для нейтроноизбыточных изотопов. Известно около 1500 β-радиоактивных изотопов всех элементов периодической системы, кроме самых тяжёлых (Z ≥ 102).

Энергия Б.-р. ныне известных изотопов лежит в пределах от

периоды полураспада заключены в широком интервале от 1,3 · 10-2 сек (12N) до Бета-распад 2 1013 лет (природный радиоактивный изотоп 180W).

В дальнейшем изучение Б.-р. неоднократно приводило физиков к крушению старых представлений. Было установлено, что Б.-р. управляют силы совершенно новой природы. Несмотря на длительный период, прошедший со времени открытия Б.-р., природа взаимодействия, обусловливающего Б.-р., исследована далеко не полностью. Это взаимодействие назвали «слабым», т.к. оно в 1012 раз слабее ядерного и в 109 раз слабее электромагнитного (оно превосходит лишь гравитационное взаимодействие; см. Слабые взаимодействия). Слабое взаимодействие присуще всем элементарным частицам (См. Элементарные частицы) (кроме фотона). Прошло почти полвека, прежде чем физики обнаружили, что в Б.-р. может нарушаться симметрия между «правым» и «левым». Это несохранение пространственной чётности было приписано свойствам слабых взаимодействий.

Изучение Б.-р. имело и ещё одну важную сторону. Время жизни ядра относительно Б.-р. и форма спектра β-частиц зависят от тех состояний, в которых находятся внутри ядра исходный нуклон и нуклон-продукт. Поэтому изучение Б.- р., помимо информации о природе и свойствах слабых взаимодействий, значительно пополнило представления о структуре атомных ядер.

Вероятность Б.-р. существенно зависит от того, насколько близки друг к другу состояния нуклонов в начальном и конечном ядрах. Если состояние нуклона не меняется (нуклон как бы остаётся на прежнем месте), то вероятность максимальна и соответствующий переход начального состояния в конечное называется разрешённым. Такие переходы характерны для Б.-р. лёгких ядер. Лёгкие ядра содержат почти одинаковое число нейтронов и протонов. У более тяжёлых ядер число нейтронов больше числа протонов. Состояния нуклонов разного сорта существенно отличны между собой. Это затрудняет Б.-р.; появляются переходы, при которых Б.-р. происходит с малой вероятностью. Переход затрудняется также из-за необходимости изменения спина ядра. Такие переходы называются запрещёнными. Характер перехода сказывается и на форме энергетического спектра β-частиц.

Экспериментальное исследование энергетического распределения электронов, испускаемых β-радиоактивными ядрами (бета-спектра), производится с помощью Бета-спектрометров. Примеры β-спектров приведены на рис. 1 и рис. 2.

15

Лит.: Альфа-, бета- и гамма-спектроскопия, под ред. К. Зигбана, пер. с англ., в. 4, М., 1969, гл. 22—24; Экспериментальная ядерная физика, под ред. Э. Сегре,

пер. с англ., т. 3, М., 1961.

Е. М. Лейкин.

Бета-спектр нейтрона. На оси абсцисс отложена кинетич. энергия электронов Е в кэв, на оси ординат — число электронов N (Е) в относительных единицах (вертикальными чёрточками обозначены пределы ошибок измерений электронов с данной энергиией).

Бета-спектр RaE (пример β -спектра тяжёлого элемента).

16

Гамма-излучение

Гамма-излучение (γ-излучение) – электромагнитное излучение, принадлежащее наиболее высокочастотной (коротковолновой) части спектра электромагнитных волн. Приведем классификацию электромагнитных волн:

Название

Длина волны, м

Частота, Гц

 

 

 

радиоволны

3·105 - 3

103 - 108

 

 

 

микроволны

3 - 3·10-3

108 - 1011

 

 

 

 

инфракрасное излучение

3·10-3

- 8·10-7

1011 - 4.1014

 

 

 

 

видимый свет

8·10-7

- 4·10-7

4·1014 - 8·1014

 

 

 

 

ультрафиолетовое излучение

4·10-7

- 3·10-9

8·1014 - 1017

 

 

 

 

 

рентгеновское излучение

3·10-9

- 10-10

1017 - 3·1018

 

 

 

 

гамма-излучение

< 10-10

> 3·1018

 

 

 

 

На шкале электромагнитных волн гамма-излучение соседствует с рентгеновскими лучами, но имеет более короткую длину волны. Первоначально термин “ гаммаизлучение” относился к тому типу излучения радиоактивных ядер, который не отклонялся при прохождении через магнитное поле, в отличие от α- и β-излучений.

Условно верхней границей длин волн гамма-излучения, отделяющей его от рентгеновского излучения, можно считать величину 10-10 м. При столь малых длинах волн первостепенное значение имеют корпускулярные свойства излучения. Гамма-излучение представляет собой поток частиц - гамма-квантов или фотонов, с энергиями Е = hν (h – постоянная Планка, равная 4.14·10-15 эВ.сек, ν – частота электромагнитных колебаний). Фотоны с энергиями Е > 10 кэВ относят к гамма-квантам. Между длиной волны λ гаммаизлучения и его частотой ν существует то же соотношение, что и для других типов электромагнитных волн:

ν·λ = с (с – скорость света).

Частота гамма-излучения (> 3·1018 Гц) отвечает скоростям электромагнитных процессов, протекающих внутри атомных ядер и с участием элементарных частиц. Поэтому источниками гамма-излучения могут быть атомные ядра и частицы, а также ядерные реакции и реакции между частицами, в частности аннигиляция пар частицаантичастица. И наоборот, гамма-излучение может поглощаться атомными ядрами и способно вызывать превращения частиц. Изучение спектров ядерного гамма-излучения и

17

гамма-излучения, возникающего в процессах взаимодействия частиц, дает важную информацию о структуре этих микрообъектов.

Гамма-излучение может также возникать при торможении быстрых заряженных частиц в среде (тормозное гамма-излучение) или при их движении в сильных магнитных полях (синхротронное излучение).

Источниками гамма-излучения являются также процессы в космическом пространстве. Космические гамма-лучи приходят от пульсаров, радиогалактик, квазаров, сверхновых звёзд.

Гамма-излучение ядер испускается при переходах ядра из состояния с большей энергией в состояние с меньшей энергией, и энергия испускаемого гамма-кванта с точностью до незначительной энергии отдачи ядра равна разности энергий этих состояний (уровней) ядра. Энергия ядерного гамма-излучения обычно лежит в интервале от нескольких кэВ до нескольких МэВ и спектр этого излучения линейчатый, т. е. состоит из ряда дискретных линий. Изучение спектров ядерного гамма-излучения позволяет определить энергии состояний (уровней) ядра.

При распадах частиц и реакциях с их участием обычно испускаются гамма-кванты с бoльшими энергиями - десятки-сотни МэВ.

Гамма-излучение, образующееся при прохождении быстрых заряженных частиц через вещество, вызывается их торможением в кулоновском поле ядер вещества. Тормозное гамма-излучение имеет сплошной, спадающий с ростом энергии спектр, верхняя граница которого совпадает с кинетической энергией заряженной частицы. На ускорителях заряженных частиц получают тормозное гамма-излучение с энергиями до нескольких десятков ГэВ и более.

Гамма-излучение можно получить при соударении электронов большой энергии от ускорителей с интенсивными пучками видимого света, создаваемых лазерами. При этом электрон передает свою энергию световому фотону, который превращается в гамма-квант. Аналогичное явление может иметь место и в космическом пространстве в результате соударений фотонов с большой длиной волны с быстрыми электронами, ускоренными электромагнитными полями космических объектов.

Гамма-излучение обладает большой проникающей способностью, т. е. может проходить сквозь большие толщи вещества. Интенсивность узкого пучка моноэнергетических гаммаквантов падает экспоненциально с ростом проходимого им в веществе расстояния. Основные процессы взаимодействия гамма-излучения с веществом - фотоэлектрическое поглощение (фотоэффект), комптоновское рассеяние (комптон-эффект) и образование пар электрон-позитрон. При фотоэффекте гамма-квант выбивает из атома один из его электронов, а сам исчезает. При комптон-эффекте гамма-квант рассеивается на одном из слабо связанных с атомом или свободных электронов вещества. Если энергия гаммакванта превышает 1.02 МэВ, то возможно его превращение в электрическом поле ядер в пару электрон-позитрон (процесс обратный аннигиляции).

18

Рис. Зависимость полного коэффициента поглощения гамма-излучения в свинце и алюминии от энергии (сплошные линии). Поглощение за счёт фотоэффекта в алюминии пренебрежимо мало при рассматриваемых энергиях. Пунктирные линии − отдельные вклады, вносимые в полный коэффициент поглощения фотоэффектом, комптоновским рассеянием, рождением пар для свинца.

Гамма-излучение используется в технике (напр., дефектоскопия), радиационной химии (для инициирования химических превращений, напр., при полимеризации), сельском хозяйстве и пищевой промышленности (мутации для генерации хозяйственно-полезных форм, стерилизация продуктов), в медицине (стерилизация помещений, предметов, лучевая терапия) и др.

Ядерный реактор, принцип действия, работа ядерного реактора

Каждый день мы используем электричесто и не задумываемся над тем, как оно производится и как оно к нам попало. А тем не менее это одна из самых важных частей современной цивилизации. Без электричества не было бы ничего – ни света, ни тепла, ни движения.

Все знают про то, что электричевто вырабатывается на электростанциях, в том числе и на атомных. Сердце каждой АЭС – это ядерный реактор. Именно его мы будем разбирать в

этой статье.

Ядерный реактор, устройство в котором проистекает управляемая цепная ядерная реакция с выделением тепла. В основном ти устройства используются для выработки электроэнергии и в качестве привода больших кораблей. Для того, чтобы представить себе, мощность и экономичность ядерных реакторов можно привести пример. Там где среднему ядерному реактору потребуется 30 килограмм урана, средней ТЭЦ потребуется 60 вагонов угля или 40 цистерн мазута.

19

Прообраз ядерного реактора был построен в декабре 1942 года в США под руководством Э. Ферми. Это была так называемая “ Чикагская стопка”. Chicago Pile ( впоследствии слово “Pile” наряду с другими значениями стало обозначать ядерный реактор). Такое название дали ему из-за того, что он напоминал собой большую стопку графитовых блоков, положенных один на другой.

Между блоками была помещены шарообразные “ рабочие тела”, из природного урана и его диоксида.

В СССР первый реактор был построен под руководством академика И. В. Курчатова. Реактор Ф-1 был заработал 25 декабря 1946 г. Реактор был в форме шара, имел в диаметре около 7,5 метров. Он не имел системы охлаждения, поэтому работал на очень малых уровнях мощности.

Исследования продолжились и в 27 июня 1954 года вступила в строй первая в мире атомная электростанция мощностью 5 МВт в г. Обнинске.

Принцип действия атомного реактора.

При распаде урана U235 происходит выделение тепла, сопровождаемое выбросом двухтрех нейтронов. По статистическим данным – 2,5. Эти нейтроны сталкиваются с другими атомами урана U235. При столкновении уран U235 превращается в нестабильный изотоп U236, который практически сразу же распадается на Kr92 и Ba141 + эти самые 2-3 нейтрона. Распад сопровождается выделением энергии в виде гамма излучения и тепла.

Это и называется цепная реакция. Атомы делятся, количество распадов увеличивается в геометрической прогрессии, что в конечном итоге приводит к молниеносному, по нашим меркам высвобождению огромного количества энергии – происходит атомный взрыв, как последствие неуправляемой цепной реакции.

Однако в ядерном реакторе мы имеем дело с управляемой ядерной реакцией. Как такая становится возможной – рассказано дальше.

Устройство ядерного реактора.

В настоящее время существует два типа ядерных реакторов ВВЭР (водо-водяной энергетический реактор) и РБМК (реактор большой мощности канальный). Отличие в том, что РБМК – кипящий реактор, а ВВЭР использует воду под давлением в 120 атмосфер.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]