Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
11_02_Samokontrol_1.docx
Скачиваний:
17
Добавлен:
12.03.2022
Размер:
1.12 Mб
Скачать
  1. Ход лучей света в микроскопе. Какие конденсоры применяются? Как выглядит поле зрения и изучаемые объекты, почему? Можно ли этим методом исследовать живые микробы?

М икроскоп применяют для получения больших увеличений при наблюдении мелких предметов. Увеличенное изображение предмета в микроскопе получается с помощью оптической системы, состоящей из двух короткофокусных линз – объектива O1 и окуляра O2. Объектив даст действительное перевернутое увеличенное изображение предмета. Это промежуточное изображение рассматривается глазом через окуляр, действие которого аналогично действию лупы. Окуляр располагают так, чтобы промежуточное изображение находилось в его фокальной плоскости; в этом случае лучи от любой точки предмета распространяются после окуляра параллельным пучком.Мнимое изображение предмета, рассматриваемое через окуляр, всегда перевернуто.

Темнопольная микроскопия:Микроскопия в темном поле основана на освещении объектов косыми лучами света. Лучи не попадают в объектив и остаются невидимыми для глаза, поэтому поле зрения выглядит совершенно черным. Если препарат содержит микроорганизмы, то косые лучи в определенной степени отражаются от их поверхности и, отклоняясь от своего первоначального направления, попадают в объектив. В этом случае на интенсивно черном поле видны ослепительно яркие светящиеся объекты. Такое освещение достигается применением специального темнопольного конденсора, имеющего затемненную среднюю часть. Поэтому центральные лучи света, идущие от зеркала, задерживаются, а в плоскость препарата попадают только боковые лучи, отраженные от зеркальных поверхностей, расположенных внутри конденсора. При микроскопировании в темном поле можно увидеть объекты, величина которых измеряется сотыми долями микрона, т.е. лежит за пределами видимости обычного микроскопа. Микроскопия в темном поле позволяет увеличить разрешающую способность объектива примерно в 10 раз.Темнопольную микроскопию используют для исследования живых микроорганизмов.

Фазово-контрастная микроскопия: С помощью фазово-контрастного устройства различия в фазе световых лучей при прохождении их через прозрачные объекты превращаются в амплитудные, в результате чего объекты становятся контрастными.Фазово-контрастное устройство представляет собой приставку к микроскопу и состоит их специальных фазовых объективов, дающих разное увеличение, конденсора с набором кольцевых диафрагм, каждая из которых соответствует определенному объективу, и вспомогательного микроскопа. Он дает возможность наблюдать живые объекты без их фиксации и окрашивания.

Люминесцентная (флуоресцентная) микроскопия: между зеркалом микроскопа и источником света устанавливают синий светофильтр, пропускающий только лучи, вызывающие люминесценцию. На окуляр микроскопа помещают желтый светофильтр, пропускающий все цвета, кроме проходящих через первый светофильтр.

Б иологические микроскопы.

Предметный столик имеет в центре отверстие для прохождения лучей света, освещающих аппарат.

Осветительный аппарат предназначен для равномерного освещения поля зрения и состоит из зеркала и конденсора с ирисовой диафрагмой. Двустороннее зеркало (вогнутое с одной и плоское с другой стороны) устанавливается в любой плоскости. Оно направляет пучок параллельных лучей, идущих от осветителя, в конденсор. Вогнутой стороной зеркала пользуется при работе без конденсора с низкоапертурнымобъективом при искусственном и слабом освещении. При работе с конденсором пользуются плоской стороной зеркала.

Н ад зеркалом расположен конденсор, он концентрирует параллельные лучи, идущие от источника света, и отраженные зеркалом, в одной точке, фокусе, который должен находиться в плоскости препарата. Конденсор представляет собой оптическую систему линз. Ход лучей от источника света через линзы конденсора к исследуемому объекту представлен на рисунке 2. Линзы конденсора вместе с ирисовой диафрагмой вмонтированы в цилиндрическую оправу. Ирисовая диафрагма располагается под нижней линзой и состоит из ряда подвижных серповидных пластин. Расширяя и сужая диафрагмы, задерживают излишние лучи света и улучшают контрастность изображения.

О бъектив является наиболее важной частью микроскопа, он определяет разрешающую способность и качество изображения. Он дает действительное увеличенное и обратное изображение изучаемого объекта. Объектив состоит из системы линз, самая главная из них – наружная (фронтальная), обращенная к препарату. Это основная и единственная линза в объективе, дающая увеличение. Чем больше кривизна фронтальной линзы, тем короче фокусное расстояние и тем больше увеличение объектива и, следовательно, тем ниже необходимо опускать объектив над поверхностью препарата.

  1. Как готовится препарат для исследования в тёмном поле? Фазово-контрастная микроскопия – принцип метода. Какие приборы и приспособления нужны для фазово-контрастной микроскопии? Преимущества данного метода.

Препараты для исследования в темном поле должны быть приготовлены на очень чистых предметных и покровных стеклах определенной толщины: предметные – не более 1,2 мм, покров­ные – 0,17 мм. Готовят препарат по типу "раздавленной" или "висячей" капли (рис. 5). Между препаратом и конденсором помещают иммерсионное масло (каплю его наносят на верхнюю линзу конденсора). После этого, поднимая и опуская конденсор, добиваются появления в поле зрения светлого пятна, которое с помощью специальных регули­ровочных винтов конденсора выводят в середину поля зрения. Затем с помощью нужного увеличения переходят к наблюдению.

Фазово-контрастная микроскопия

Фазово-контрастный микроскоп значительно повышает контра­стность объектов, проницаемых для света, и в медицине ис­пользуется для изучения нативных препаратов. С помощью этого метода могут быть исследованы без предварительной обработки бесцветные, прозрачные объекты, детали, строение которых оп­тически мало различаются между собой.

Окрашенные препараты частично поглощают свет. Пучок света, проходящий через такой препарат, теряет в своей ин­тенсивности, т.е. уменьшается амплитуда световой волны, и это легко улавливается глазом исследователя. Такие препараты контрастны даже в обычном микроскопе и называются “амплитуд­ными”. Препараты, не поглощающие света, прозрачны. Пучок света, проходящий через такой препарат, не теряет своей ин­тенсивности. Амплитуда световой волны не изменяется, а лишь изменяется фаза колебания, что не регистрируется человече­ским глазом. Такие объекты называются фазовыми. К ним отно­сятся живые, неокрашенные препараты. Чтобы повысить контра­стность изображения, необходимо превратить фазовые изменения в амплитудные. Это достигается путем помещения в объективы фазовой пластинки в форме кольца и применением кольцевой диафрагмы. Каждому объективу соответствует своя диафрагма. Изображение этой диафрагмы совпадает с кольцом фазовой пла­стинки соответствующего объектива. Метод фазовых контрастов может быть положительным и отрицательным. В первом случае на светлом фоне поля наблюдается темное изображение объекта, а во втором фон темный, а объект светлый. Наилучшие результаты наблюдаются в случае положительного контраста.

Распространение световых волн в прозрачных однородных объектах не сопровождается потерей интенсивности света. Ме­няется только скорость прохождения светового потока через объект по сравнению со скоростью распространения света в окружающей среде. Она будет большей или меньшей в зависимости от того, будет ли показатель светопреломления объекта соответственно меньше или больше, чем в окружающей среде. Эти изменения, называе­мые иначе фазовыми, так как при них меняются только фаза ко­лебаний прошедшего света, характерны для большинства биоло­гических объектов (живых клеток, срезов тканей и т. п.).

Человеческий глаз хорошо определяет изменения интенсив­ности света, наступающие при прохождении через окрашенные (амплитудные) препараты, когда меняется амплитуда колебаний света. Однако глаз не способен воспринимать фазовые измене­ния света. Поэтому прозрачные неконтрастные (фазовые) объ­екты при обычном микроскопическом исследовании остаются не­видимыми.

Для работы по методу фазового контраста нужно, кроме обычного биологического микроскопа, иметь еще специальное устройство. Установку устройства производят следующим обра­зом. Конденсор и объектив заменяют фазовыми. Фазовый конден­сор поворотом револьверного диска устанавливают на 0. Это положение соответствует обычному светопольному конденсору. Затем, поместив на предметный столик препарат и сфокусировав его, приступают к наладке освещения. При исследовании мето­дом фазового контраста основным условием является оптималь­ная освещенность, которая достигается установкой света по Келеру. После этого устанавливают револьверный диск на то число, которое соответствует выбранному объективу; например, при объективе 40 в окошечке также устанавливают цифру 40. Вынув окуляр, на его место устанавливают вспомогательный микроскоп и настраивают его на изображение двух колец (коль­цевая диафрагма конденсора и фазовая пластинка). Центро­вочным устройством конденсора добиваются совмещения колец. Заменив вспомогательный микроскоп окуляром, можно произво­дить исследование препарата.

Метод аноптрального контраста является усовершенствованием метода фазового контраста. Теоретические обоснования и конструктивные особенности аноптрального устройства, в основном не отличаются от обычной фазово-контрастной установки (рис. 6). Принцип его устройства заключается в следующем. На верхнюю поверхность предпоследней линзы иммерсионного объектива наносится кольцо из сажи, пропускающей лишь около 10% проходящего света. В передней фокальной плоскости кон­денсора помещается кольцевая диафрагма, изображение которой должно полностью совпадать с кольцом сажи на объективе. Пре­парат освещается полным конусом лучей, проходящих через кольцевую диафрагму конденсора. При отсутствии объектов (например, микробов в препарате) в объектив попадают только недифрагированные лучи, амплитуда которых, после того как они пройдут через кольцо сажи, уменьшится на 90%. В то же время амплитуда лучей, дифрагированных частицами объекта, которые пройдут мимо кольца из сажи, не изменится и поэтому фон поля будет темный, а частицы объекта светлыми. Пре­имуществом метода аноптральной микроскопии является боль­шая разрешающая способность объективов и возможность выяв­ления минимальных оптических разностей плотности в неокра­шенных препаратах. Чем больше оптическая плотность объекта, тем светлее его изображение. Методика использования устрой­ства не отличается от фазово-контрастного. При помощи аноптрального микроскопа можно изучать морфо­логию и локализацию нуклеоидов (ядерный аппарат), наблюдать за изменениями морфологии бактерий в процессе нормального роста и размножения.

  1. Люминесцентная микроскопия - на каком физическом явлении основана? Виды люминесценций. Какой источник света используется? Как называются красители, применяемые для получения вторичной люминесценции? Можно ли исследовать этим методом живые микроорганизмы? Преимущества метода.

Л юминесцентная (флюоресцентная) микроскопия основана на способности некоторых веществ люминесцировать, т. е. светиться при освещении невидимым ультрафиолетовым или синим светом.

Источник света должен содержать в своем спектре длину волны, возбуждающую молекулы красителя, а светофильтры подбираются таким образом, чтобы добиться хорошего расхождения между длинами волн возбуждающего ультрафиолетового света и излучения, испускаемого возбужденными объектами.

При люминесцентной микроскопии используют специальный микроскоп. Источником света в нем служит кварц-галогеновая или ртутная лампа.

Вторичная, или наведённая, люминесценция возникает в результате обработки микроскопируемых объектов флюоресцирующими красителями - флюорохромами, что позволяет проводить люминесцентно-цитологический и люминесцентно-цитохимический анализ.

Метод люлюминесцетной микроскопии позволяет исследовать живые клетки, их строение, помогает определить места расположения нуклеиновых кислот, витаминов, жиров и др.

Главным преимуществом люминесцентной микроскопии считается возможность увидеть образец изнутри. Остальные приборы изучают лишь поверхность объекта. Метод люминесцентной микроскопии применяется для исследования клеток организма. Флюоресцентные устройства часто используют криминалисты.

  1. Электронная микроскопия – что используется в электронном микроскопе вместо световых лучей? Чем объясняется высокая разрешающая способность электронного микроскопа? Какова длина световой волны; длина волны потока электронов?

В электронном микроскопе вместо световых волн используются электронные лучи, обладающие чрезвычайно малой длиной волны и высокой разрешающей способностью.

В электронном микроскопе разрешение намного больше, поскольку у электронов длина волны намного меньше, чем у видимого света. Предел разрешения в электронном микроскопе составляет на практике около 0,5 нм, тогда как для светового микроскопа он равен 200 нм. Свет – это видимая область электромагнитного излучения в диапазоне длин волн от 380 нм до 780 нм. Именно в этом диапазоне оптическое излучение способно возбуждать сетчатку глаза человека и создавать зрительный образ. Помимо видимой области излучения в светотехнике рассматривают также ультрафиолетовое (длина волны от 1 нм до 380 нм) и инфракрасное излучение (длина волны от 780 нм до 1 мк).

Соседние файлы в предмете Микробиология