Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УСР_№2_«Влагооборот_в_ландшафтах».docx
Скачиваний:
1
Добавлен:
01.05.2023
Размер:
107.4 Кб
Скачать

1.2 Особенности влагооборота в основных типах зональных ландшафтов

Влагооборот в ландшафте протекает через сложную систему водных потоков и пронизывает ландшафт, подобно кровеносной системе. Посредством потоков влаги осуществляется основной минеральный обмен внутри ландшафта. Внешние вещественные связи ландшафта также осуществляются через водные потоки. Перемещение влаги сопровождается формированием растворов, коллоидов, взвесей; транспортировкой и аккумуляцией химических элементов.

Интенсивность влагооборота и его структура специфичны для разных ландшафтов и зависят прежде всего от энергообеспеченности и количества осадков, подчиняясь зональным и отчасти азональным закономерностям. Так, абсолютные показатели внешнего влагообмена хорошо увязываются с зональными закономерностями циркуляции и влагооборота атмосферы (см. таблицу 1).

Таблица 1

Основные элементы водного баланса типичных ландшафтов в различных зонах (средние годовые показатели)

Наиболее обильное поступление внешних осадков и соответственно более интенсивный вынос воды из ландшафта наблюдается в экваториальных широтах, а также в муссонных тропиках и субтропиках, затем в приокеанических областях пояса западного переноса. Наиболее слабые входящие и выходящие потоки влаги свойственны внутриконтинентальным областям и особенно поясу тропической пассатной циркуляции.

При наличии достаточного запаса влаги интенсивность внутриландшафтного влагооборота определяется энергоресурсами. Поэтому чётко выраженный пик внутреннего оборота влаги также приходится на экваториальную зону и отсюда происходит закономерный спад к полюсам. В аридных зонах и секторах наблюдается резкий спад влагооборота.

Только в высоких широтах внешние потоки влаги превосходят внутренний оборот; в гумидных экваториальных, тропических и субтропических ландшафтах оба типа потоков примерно равны; с усилением аридности доля внутреннего потока растёт, хотя по абсолютной величине он уменьшается.

1.3 Антропогенная трансформация влагооборота в ландшафтах

Из всех звеньев влагооборота наибольшему целенаправленному преобразованию подвергается сток. Функционирование геосистем непосредственно затрагивают воздействия, направленные на формирование стока с поверхности водосборов. Один из самых радикальных способов преобразования водного баланса наземных геосистем – искусственное орошение, на которое уходит не менее 3/4 забираемой из рек воды. В мире искусственно орошается 2,7 млн км2 (1,5 % площади суши). В среднем на 1 га расходуется ежегодно 12-14 тыс. мводы. Часть этой воды теряется на инфильтрацию и непродуктивное (физическое) испарение и лишь около половины транспирируется культурными растениями.

На богарных пахотных землях примитивная агротехника способствует усилению поверхностного стока. Зяблевая пахота повышает инфильтрационную способность почв, тем самым увеличивая запасы почвенной влаги, сокращая поверхностный сток и, по-видимому, несколько увеличивая питание грунтовых вод. Лесные полосы перехватывают весенний сток с полей, задерживают снег, уменьшают непродуктивное испарение. Травосеяние также увеличивает инфильтрацию и сокращает поверхностный сток. Дополнительный эффект дает снегозадержание. Аналогичное действие оказывает террасирование склонов. В целом любые меры по интенсификации земледелия и повышению урожайности (а, следовательно, транспирации) ведут к перестройке водного баланса в сторону сокращения поверхностного стока; вместе с тем уменьшается интенсивность смыва почв и эрозии.

В зонах избыточного увлажнения основным фактором воздействия на водный баланс служит осушительная мелиорация. Сток с осушенных болот вначале обычно возрастает, но в дальнейшем этот процесс может протекать по-разному в различных ландшафтах.

Примерно на 0,3 % площади суши наземные геосистемы замещены искусственными водохранилищами. При сработке уровня (в меженный период) часть поверхности дна, особенно равнинных водохранилищ, обнажается и здесь наблюдается своеобразный «земноводный» режим. Прилегающие к водохранилищу геосистемы испытывают воздействия вторичных процессов: переработки берегов (размыв, активизация оползней, обвалы, провалы), подпора грунтовых вод, повышения их уровня и подтопления пониженных участков, а отсюда – заболачивание лесов, сельскохозяйственных и других угодий.

Влияние водохранилища на местный климат проявляется в некотором выравнивании температурного режима, увеличении влажности воздуха, изменении скорости и направления ветра. Практически значимое климатическое влияние самых крупных равнинных водохранилищ ощущается на расстоянии 1-3 км от берега. Подтопление распространяется чаще на сотни метров или первые километры от берегов водохранилища. В нижнем бьефе водохранилища из-за прекращения поемного режима нередко деградируют пойменные геосистемы на протяжении десятков и сотен километров.