Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Другие файлы / Бакарасов. Экология ландшафтов. Курс лекций .doc
Скачиваний:
112
Добавлен:
01.05.2023
Размер:
561.15 Кб
Скачать

2. Геофизические процессы в ландшафтах

2.1. Влагооборот в ландшафтах

Во всех ландшафтах суши вода играет важную роль, являясь неразрывной частью природных территориальных комплексов. Она участвует во всех протекающих в них процессах, вступает во всевозможные связи и реакции. Вместе с тем вода активно перемещается и в пределах ландшафта находится в непрерывном движении и превращении: в поверхностном и подземном стоке, нисходящих и восходящих движениях в почвах и грунтах, транспирации и биологических превращениях в живых организмах, испарении и перемещениях в приземном слое воздуха. Вода – это один из основных лимитирующих экологических факторов и от ее количества в ландшафте, сбалансированности потоков влаги зависят численные параметры ландшафта, определяющие его потенциал.

Под влагооборотом понимается совокупность процессов превращения, перемещения и изменения количества влаги в природно-территориальном комплексе.

С влагооборотом тесно связан водный баланс территории. Коллектив авторов под руководством М.И.Львовича (1969) предложил комплексный метод изучения водного баланса. Он состоит из следующих уравнений:

P = S + U + E; W = P − S = U + E, где

P – осадки, S – поверхностный сток; U – подземный сток; E – суммарное испарение; W – валовое увлажнение территории.

К.Н. Дьяконов (1991) приводит более детальное уравнение водного баланса:

X1+X2+r=Sb+Sn+U+E+T+Bx±g±W

Z=Sb+Sn+U ,

где X1 – атмосферные осадки в жидкой фазе; X2 – атмосферные осадки в твердой фазе (снег); r – роса; Sb – поверхностный весенний сток; Sn – внутрипочвенный сток; U – подземный сток; Z – суммарный русловой сток или интегральный сток для замыкающего створа геосистемы; E – физическое испарение; T – транспирация; Bx – аккумуляция влаги в годовом приросте биомассы; W – изменение влагозапасов в почве за некоторый интервал времени; g – фильтрационный поток воды из геосистемы и поток глубинных напорных вод в геосистему. Размерность членов уравнения кг/с/м2, мм/год, м3/год, л/с/км2.

Основу влагооборота образуют твердые и жидкие атмосферные осадки, поступающие к верхней границе ландшафта. В ландшафте происходит их трансформация или перехват пологом растительности. Осадки, не задержанные растениями, поступают на поверхность почвы. Далее они могут уйти за пределы конкретного ландшафта в виде поверхностного стока или впитаться в почву, где пополняют запасы подземных вод и участвуют в элементарных почвообразовательных процессах. При определенных условиях запасы подземной воды могут либо уменьшаться, либо пополняться. Это может вызвать изменение режима и объема подземного и поверхностного стока.

В ландшафте вода расходуется в основном на испарение. Различают физическое испарение, которое может происходить как с растительности, так и с поверхности почвы, куда вода может поступать и из более глубоких горизонтов, а также испарение растениями, или транспирацию. Таким образом, суммарное испарение состоит из транспирации и физического испарения с поверхности почвы и растений.

В холодные сезоны года во многих ландшафтах устанавливается снежный покров. Содержание воды в снежном покрове при выпадении осадков увеличивается, а при испарени и таянии – уменьшается. Изменения могут также происходить вследствие метелевого переноса снега. При промерзании почвы часть подземной влаги может находиться в мерзлом состоянии, но динамика ее в целом аналогична жидкой фазе.

Ежегодный запас обращающейся в ландшафте влаги составляют атмосферные осадки – жидкие и твердые, а также вода, поступающая в почву за счет конденсации водяного пара. Часть осадков перехватывается поверхностью растительного покрова и испаряясь с нее, возвращается в атмосферу. В лесных ландшафтах некоторое количество воды стекает по стволам деревьев и попадает в почву. Влага, непосредственно выпадающая на поверхность почвы, частично уходит за пределы ландшафта с поверхностным стоком и затрачивается на физическое испарение, остальное количество фильтруется в почво-грунты и образует наиболее активную часть внутреннего влагооборота. Относительно небольшая доля расходуется на абиотические процессы в почве, участвует в гидратации и дегидратации, более или менее значительное количество почвенно-грунтовой влаги выпадает из внутреннего влагооборота (потери на подземный сток). При иссушении почвы влага поднимается по капиллярам и может пополнить поток испарения. Однако в большинстве ландшафтов почвенные запасы влаги в основном всасываются корнями растений и вовлекаются в продукционный процесс.

Интенсивность влагооборота и его структура (соотношение отдельных составляющих) специфичны для разных ландшафтов и зависят, прежде всего, от энергообеспеченности и количества осадков, подчиняясь зональным и азональным закономерностям.

Величина суммарного (поверхностного и подземного) стока служит показателем выходного потока влаги. Абсолютные величины внешнего влагообмена хорошо увязываются с общими зонально-азональными закономерностями циркуляции атмосферы: то есть, наиболее обильное поступление внешних осадков (и соответственно наиболее интенсивный вынос воды из ландшафта) наблюдается в экваториальных широтах, а также в муссоных тропиках и субтропиках, а затем в приокеанических областях пояса западного воздушного переноса. Наиболее слабые входные и выходные потоки влаги свойственны внутриконтинентальным областям и особенно поясу тропической пассатной циркуляции.

Обобщенным показателем внутриландшафтного влагооборота можно считать суммарное испарение. При наличии достаточного количества влаги его интенсивность определяется энергоресурсами. Поэтому четко выраженный пик внутреннего оборота влаги также приходится на экваториальную зону, и отсюда происходит закономерный спад к полюсам, но на этом общем фоне резкими «провалами» выглядят аридные зоны и сектора.

Соотношения между внешним и внутренним влагооборотом выражается коэффициентом стока или дополняющим его до единицы коэффициентом испарения. Расчеты показали, что только в высоких широтах внешние потоки влаги превосходят внутренний оборот, а в гумидных экваториальных, тропических и субтропических ландшафтах оба типа потоков примерно равны, с усилением аридности доля внутреннего оборота растет, хотя по абсолютной величине он уменьшается.

Во внутриландшафтом влагообороте основную роль играет биота, особенно лесные сообщества. Кроны деревьев перехватывают до 20 % и более годового количества осадков (например, сосняки – 140-150 мм, ельники – 200-230 мм, экваториальные леса – до 500 мм). Основная их часть, как уже отмечалось, испаряется, но некоторое количество стекает по стволам деревьев.

Однако главное звено биологического влагооборота – транспирация. На единицу продуцируемой фитомассы (в сухой массе) расходуется в среднем около 400 мас.ед.воды – в холодном и влажном климате меньше, в жарком и сухом – больше (например, у бука – 170, лиственницы – 260, сосны – 300, березы –320, дуба – 340, у растений пустынь – до 1000 –1500). Из этого количества в состав живого организма входит менее 1 % - примерно 0,75 % свободной воды и 0,15 % содержится в сухой массе (в виде водородных атомов молекулярной воды, связанных с при фотосинтезе с атомами углерода). Основная масса почвенной влаги, потребляемой растениями, транспирируется. В плакорных условиях наибольшее количество влаги перекачивает в атмосферу влажный экваториальный лес, примерно в 2 раза меньше – суббореальный широколиственный лес. В холодном климате транспирация резко снижается, а в экстрааридном она минимальна (хотя доля осадков расходуемых на транспирацию, в аридных условиях обычно значительно больше, чем в гумидных). В гидроморфных условиях, при наличии подтока поверхностных или грунтовых вод, транспирация может превосходить количество осадков.

В ландшафтах с развитым растительным покровом транспирация намного превышает физическое испарение, и подавляющая часть влаги поступает от подстилающей поверхности в атмосферу через транспирацию. Так, в экваториальных лесах Малайзии годовая величина транспирации составляет 1350 мм, а испарение с поверхности почвы – всего лишь 25 мм. Только через транспирацию «дождевых» экваториально-тропических лесов в атмосферу поступает 62 % влаги, испаряющейся с суши. Если же учесть возврат осадков, перехватываемых кронами деревьев, то в целом биота обеспечивает не менее 70-80 % внутреннего оборота влаги между атмосферой и остальными блоками наземных геосистем. Растительность прямо или косвенно способствует уменьшению выходного потока влаги путем сокращения поверхностного стока. При наличии мощной подстилки из растительных остатков поверхностный сток может практически прекращаться.

В процессе фотосинтеза расходуется сравнительно небольшое количество воды. Это вода может быть даже не учтена при составлении водного баланса, так как ее количество обычно меньше, чем погрешность определения остальных членов уравнения водного баланса. Однако эта вода играет большую роль, так как без нее не может происходить столь важный для функционирования геосистемы процесс фотосинтеза.

Потоки влаги в ландшафте отличаются высокой чувствительностью к антропогенным факторам. С этим связана возможность их антропогенного регулирования, что и осуществляется при водных мелиорациях. При недостаточном учете сложных закономерностей структуры водных потоков в ландшафте мелиорация часто приводит к неблагоприятным или катастрофическим экологическим последствия. Так, существенно изменяются водные потоки при осушении земель. Здесь основная опасность – переосушение. Поскольку понижение уровня грунтовых вод ниже некоторой критической глубины может способствовать дефляции, обмелению рек и т.д.