Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на экзамен по физике 2022.docx
Скачиваний:
40
Добавлен:
15.07.2023
Размер:
17.86 Mб
Скачать

52. Свойства альфа и бета частиц . Удельная ионизация проникающая способность. Рассеяние бета частиц. Принципы защиты от альфа и бета частиц

Ионизация удельная (ионизирующая способность) - число пар разноимённых носителей электрич. заряда (пар ионов, пар электрон - дырка), создаваемых как непосредственно в столкновениях заряженной частицы (первичная И. у.), так и с учётом ионизации вторичными электронами (полная И. у.) на единице длины пути в веществе.

Проникающая способность

Бета-частицы, имея малую массу (в 7000 раз легче альфа-частицы), большую скорость и отрицательный заряд, значительно отклоняются от первоначального направления в результате соударения с орбитальными электронами и ядрами встречных атомов (эффект рассеяния). Претерпевая многократное рассеяние, бета-частицы могут даже двигаться в обратном направлении – обратное рассеяние

53. Получение рентгеновских лучей. Тормозное и характеристическое рентгеновское излучение на рентгеновской трубке и силы тока в ней. Граничная длина волны (с выводом). Связь спектра излучения с его проникающей способностью.

Источником рентгеновского излучения является рентгеновская трубка. Пучок электронов с катода разгоняется высоким напряжением и ударяется в анод. При этом большая часть энергии пучка расходуется на нагрев анода (который охлаждается проточной водой) и лишь 2% преобразуется в рентгеновское излучение, состоящее из непрерывного и линейчатого спектров. Линейчатый спектр определяется материалом анода, поэтому он получил название характеристического. В зависимости от переданной атому энергии электрон переходит на более высокий уровень. Затем атом возвращается в прежнее состояние, при этом излучая квант определенной частоты. В зависимости от уровня возбуждения излучение разделяется на серии: K, L, M и т.д. Внутри каждой серии отдельные линии обозначаются греческими буквами. В рентгеновском дифракционном анализе используются линии Кa , Кb .

Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение) либо при высокоэнергетических переходах в электронных оболочках атомов (характеристическое излучение). Оба эффекта используются в рентгеновских трубках. Тормозное излучение При увеличении тока через рентгеновскую трубку интенсивность излучения возрастает прямо пропорционально току, характер спектра при этом не меняется.

Материал анода не влияет на длину волн спектра тормозного излучения (на

жёсткость излучения), но оказывает влияние на общую интенсивность излучения, которая растёт прямо пропорционально порядковому номеру химического элемента, из которого сделано зеркало анода.

Характеристическое излучение

Энергия спектра характеристического излучения значительно меньше энергии спектра тормозного излучения. Спектр характеристического излучения более мягкий и в значительной степени задерживается стеклом рентгеновской трубки. Поэтому практически можно считать, что действие рентгеновских лучей в рентгенографии обуславливается лишь спектром торможения.

Специфические свойства характеристического спектра используются при некоторых методах рентгеноструктурного анализа и в рентгеноспектральном анализе.

Рентгеновские лучи обладают проникающей способностью, тем более сильной, чем жестче они (чем короче их длина волны). Это свойство послужило причиной широкого использования рентгеновского излучения в различных аппаратах, – от рентгеновского томографа в медицине до приборов количественного элементного анализа высокой точности.

54. Взаимодействие рентгеновских и гамма-квантов с атомами и молекулами. Когерентное рассеяние, некогерентное рассеяние, фотоэффект, образование электрон-позитронных пар. Зависимость вероятности этих процессов от энергии квантов и вида вещества.

При прохождении -излучения через вещество происходит ослабление интенсивности пучка γ-квантов, что является результатом их взаимодействия с атомами вещества.     На рис. 1 показано полное эффективное сечение взаимодействия с веществом фотонов с энергиями от 10 эВ до 100 ГэВ для двух поглощающих материалов - углерода (Z = 6) и свинца (Z = 82). Выделены вклады различных физических процессов в полное сечение поглощения.

    Как видно из этих рисунков, эффективное сечение фотоэффекта (σph) на атомах вещества доминирует при энергиях фотонов ниже ~0.1 МэВ в углероде и ниже ~1 МэВ в свинце.     Вторым по величине вклада в полное сечение в этой же области энергий гамма-квантов является когерентное рассеяние фотонов на атомах вещества (релеевское рассеяние). Ни ионизации, ни возбуждения атомов при релеевском рассеянии не происходит, гамма-квант рассеивается упруго.     При энергиях гамма-кванта выше ~0.1 МэВ в веществе с малыми значениями Z и выше ~1 МэВ в веществах с большим Z главным механизмом ослабления первичного пучка гамма-квантов становится некогерентное рассеяние фотонов на электронах вещества (эффект Комптона).     Если энергия гамма-кванта превышает удвоенную массу электрона 2meс2 = 1.02 МэВ, становится возможным процесс образования пары, состоящей из электрона и позитрона. Сечение рождения пары в поле ядра (σnp на рис. 1) доминирует в области высоких энергий фотонов. На рис. 1 показано также сечение образования пар в поле атомных электронов (σep).

Фотоэффект. Если энергия γ-кванта больше энергии связи электрона оболочки атома, происходит фотоэффект. Это явление состоит в том, что фотон целиком поглощается атомом, а один из электронов атомной оболочки выбрасывается за пределы атома. Используя закон сохранения энергии, можно определить кинетическую энергию фотоэлектрона Eе:

где Ii − ионизационный потенциал оболочки атома, из которой выбивается электрон; En − энергия отдачи ядра, Eγ − энергия гамма-кванта. Величина энергии отдачи ядра обычно мала, поэтому ею можно пренебречь. Тогда энергия фотоэлектрона определится соотношением Eе = Eγ − Ii, где i = K, L, M,... − индекс электронной оболочки. Хорошо видные на рис. 1 "зубцы" в кривой эффективного сечения являются следствием скачков сечения фотоэффекта при росте энергии фотона выше различных ионизационных потенциалов электронных оболочек атома. Эффективное сечение фотоэффекта является суммой эффективных сечений фотоэффекта на отдельных электронных оболочках атома. Существенной особенностью фотоэффекта является то, что он не может происходить на свободном электроне, т. к. законы сохранения импульса и энергии в случае фотоэффекта на свободном электроне оказываются несовместимыми.

Образование пары электрон–позитрон. Можно показать, что одиночный квант любой энергии не может в вакууме превратиться в электрон-позитронную пару, так как при этом не выполняются одновременно законы сохранения энергии и импульса. Процесс образования пар происходит лишь в кулоновском поле частицы, получающей часть энергии и импульса.     Образование пар в поле ядра может иметь место, если энергия кванта удовлетворяет соотношению:

где первый член справа соответствует энергии покоя пары электрон-позитрон, а второй − энергия отдачи ядра. Так как энергия отдачи ядра сравнительно мала, то энергия, определяемая первым членом, является порогом рождения пар (2meс2 1.022 МэВ). В основном образование е+е−-пар происходит в кулоновском поле ядер атомов и эффективное сечение этого процесса (σnp на рис. 1) пропорционально квадрату заряда ядра Z2, т.е. σnp ~ Z2.      Порог рождения пар в поле электрона равен 4meс2.

55. Проникающая способность различных ионизирующих излучений. Закон ослабления (Закон Бугера). Линейный коэффициент ослабления: его зависимость от энергии квантов (частиц) и от положения элемента в таблице Менделеева (качественно). Слой половинного ослабления. Массовый коэффициент ослабления.

  1. Одной из важнейших характеристик ионизирующего излучения, определяющих особенности его поражающего действия, является проникающая способность, т. е. глубина проникновения в биологический материал. Проникающая способность ионизирующего излучения зависит от его природы, заряда составляющих его частиц и энергии, а также от состава и плотности облучаемого вещества.

  1. Закон Бугера:

Устанавливает связь между поглощенной энергией и поглощающей средой.

3)

*линейный коэффициент ослабления зависит от плотности вещества.

4) Слоем половинного ослабления b-излучения d1/2 называют толщина поглотителя, снижающую вдвое начальное (за вычетом фона) число частиц. Слой половинного ослабления связан с массовым коэффициентом ослабления d1/2 = ln2/m.