Добавил:
kiopkiopkiop18@yandex.ru Вовсе не секретарь, но почту проверяю Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

2 курс / Нормальная физиология / Физиология_с_основами_анатомии_человека_Кузнецов_В_И_,_Семенович

.pdf
Скачиваний:
0
Добавлен:
24.03.2024
Размер:
13.89 Mб
Скачать

К пластичным константам относят те, которые имеют более широкие пределы границы нормы. Так, частота пульса в условиях покоя, может изменяться в пределах 60 — 90 уд/мин, уровень глюкозы — в пределах 700 — 1200 мг/л, содержание кортизола в плазме крови - 50 — 230 мкг/л, калия — 3,4 — 5,6 ммоль/л.

Несмотря на относительно широкие границы нормы пластичных гомеостатических констант, их выход за эти границы также приводит к развитию патологических процессов в организме. Если содержание глюкозы в крови становится ниже 700 мг/л, то у человека появляется ряд субъективно неприятных ощущений (слабость, головокружение, потливость) и нарушение функций центральной нервной системы вплоть до гипогликемической комы и смерти.

Удержание относительного постоянства величины гомеостатических констант возможно только при наличии функционирования сложного комплекса механизмов регуляции гомеостаза и взаимодействия организма со средой обитания. Изучение закономерностей и механизмов таких регуляций является одной из важнейших задач физиологии.

4.2 Нервно-гуморальная регуляция функций организма

Важнейшие понятия теории физиологических регуляций.

Прежде чем рассматривать механизмы нейрогуморальных регуляций, остановимся на важнейших понятиях этого раздела физиологии. Некоторые из них разработаны кибернетикой. Знание таких понятий облегчает понимание регуляций физиологических функций и решение ряда проблем в медицине и фармакологии.

Физиологическая функция — проявление жизнедеятельности организма или его структур (клетки, органа, системы клеток и тканей), направленное на сохранение жизни и выполнение генетически и социально обусловленных программ.

Система — совокупность взаимодействующих элементов, осуществляющих функцию, которая не может быть выполнена одним отдельным элементом.

Элемент — структурная и функциональная единица системы.

Сигнал — разнообразные виды вещества и энергии, передающие информацию. Информация — сведения, сообщения, передаваемые по каналам связи и

воспринимаемые организмом.

Раздражитель — фактор внешней или внутренней среды, воздействие которого на рецепторные образования организма вызывает изменение процессов жизнедеятельности. Раздражители подразделяют на адекватные и неадекватные. К восприятию адекватных раздражителей рецепторы организма приспособлены и активируются при очень малой энергии воздействующего фактора. Например, для активации рецепторов сетчатки глаза (палочек и колбочек) достаточно 1—4 кванта света. Неадекватными являются раздражители, к восприятию которых чувствительные элементы организма не приспособлены. Например, колбочки и палочки сетчатки глаза не приспособлены к восприятию механических воздействий и не обеспечивают появления ощущения даже при значительной силе воздействия на них. Лишь при очень большой силе воздействия (удар) может произойти их активация и возникновение ощущения света.

Раздражители подразделяют также по их силе на подпороговые, пороговые и сверхпороговые. Сила подпороговых раздражителей недостаточна для

61

возникновения регистрируемой ответной реакции организма или его структур. Пороговый раздражитель – минимальный по силе раздражитель, достаточный для вызова выраженной ответной реакции (возбуждения). Сверхпороговые раздражители имеют большую силу, чем пороговые раздражители.

Раздражитель и сигнал — сходные, но не однозначные понятия. Один и тот же раздражитель может иметь разное сигнальное значение. Например, писк зайца может быть сигналом, предупреждающим об опасности сородичей, но для лисы этот же звук — сигнал о возможности добычи пищи.

Раздражение — воздействие факторов окружающей или внутренней среды на структуры организма. Надо отметить, что в медицине термин "раздражение" иногда применяется и в другом смысле — для обозначения ответной реакции организма или его структур на действие раздражителя.

Рецепторы — молекулярные или клеточные структуры, воспринимающие действие факторов внешней или внутренней среды и передающие информацию о сигнальном значении раздражителя на последующие звенья регуляторного контура.

Понятие рецепторы рассматривается с двух точек зрения: с молекулярнобиологической и морфофункциональной. В последнем случае говорят о сенсорных рецепторах.

Смолекулярно-биологической точки зрения рецепторы — специализированные белковые молекулы, встроенные в клеточную мембрану или находящиеся в цитозоле

иядре. (О таких молекулярных рецепторах чаще всего речь идет в биохимии и фармакологии). Эти молекулярные структуры называют также клеточными рецепторами. Каждый вид таких рецепторов способен взаимодействовать только со строго определенными сигнальными молекулами — лигандами. Например, для так называемых адренорецепторов лигандом являются молекулы гормона адреналина и норадреналина. Такие рецепторы встроены в мембраны многих клеток организма. Роль лигандов в организме выполняют биологически активные вещества: гормоны, нейромедиаторы, факторы роста, цитокины, простагландины. Они выполняют свою сигнальную функцию, находясь в биологических жидкостях в очень малых концентрациях. Как правило, название молекулярных рецепторов дается по важнейшему лиганду к связыванию с которым они приспособлены.

Сморфофункциональной точки зрения рецепторы (сенсорные рецепторы) — это специализированные клетки или нервные окончания, функцией которых является восприятие действия раздражителей и обеспечение возникновения возбуждения в нервных волокнах. В таком понимании термин "рецептор" чаще всего применяется в физиологии, когда речь идет о регуляциях, обеспечиваемых нервной системой. Сенсорные рецепторы, воспринимая действие раздражителей, передают сигнал на афферентные нервные волокна.

Совокупность однотипных сенсорных рецепторов и область организма, в которой они сосредоточены, называют рецепторным полем.

Функцию сенсорных рецепторов в организме выполняют:

1) специализированные нервные окончания. Они могут быть свободными, не покрытыми оболочками (например, болевые рецепторы кожи) или иметь оболочку (например, тактильные рецепторы кожи);

2) специализированные нервные клетки (нейросенсорные клетки). У человека такие сенсорные клетки имеются в слое эпителия, выстилающего поверхность

62

носовой полости; они обеспечивают восприятие пахучих веществ. В сетчатке глаза нейросенсорные клетки представлены колбочками и палочками, которые воспринимают световые лучи;

3) специализированные эпителиальные клетки — это развивающиеся из эпителиальной ткани клетки, которые приобрели высокую чувствительность к действию определенных видов раздражителей и могут передавать информацию об этих раздражителях на нервные окончания. Такие рецепторы имеются во внутреннем ухе, вкусовых луковицах языка и вестибулярном аппарате, обеспечивая возможность восприятия соответственно звуковых волн, вкусовых ощущений, положения и движения тела.

Регулирование — постоянный контроль и необходимая коррекция функционирования системы и ее отдельных структур с целью достижения полезного результата.

Физиологическая регуляция — процесс, обеспечивающий сохранение относительного постоянства или изменение в желательном направлении показателей гомеостаза и жизненных функций организма и его структур.

Для физиологических регуляций жизненных функций организма характерны следующие черты.

Наличие замкнутых контуров регулирования. В простейший регуляторный контур (рис.4.1.) входят блоки: регулируемый параметр (например, уровень содержания глюкозы в крови, величина кровяного давления), управляющее устройство — в целостном организме это нервный центр, в отдельной клетке — геном, эффекторы — органы и системы, которые под влиянием сигналов от управляющего устройства изменяют свою работу и непосредственно влияют на величину регулируемого параметра.

Рис. 4.1. Схема замкнутого контура регулирования

Взаимодействие отдельных функциональных блоков такой регуляторной системы осуществляется по каналам прямой и обратной связи. По каналам прямой связи информация передается от управляющего устройства к эффекторам, а по каналам обратной связи — от рецепторов (датчиков), контролирующих величину регулируемого параметра, к управляющему устройству (например, от рецепторов скелетных мышц — к спинному и головному мозгу).

Таким образом, обратная связь (ее в физиологии часто называют обратной афферентацией) обеспечивает поступление к управляющему устройству сигнализации о величине (состоянии) регулируемого параметра. Она обеспечивает контроль за ответом эффекторов на управляющий сигнал и за результатом действия.

63

Например, если целью движения руки человека было раскрытие учебника физиологии, то обратная связь осуществляется проведением импульсов по афферентным нервным волокнам от рецепторов глаз, кожи и мышц в головной мозг. Такая импульсация обеспечивает возможность слежения за движениями руки. Благодаря этому нервная система может осуществлять коррекцию движения для достижения необходимого результата действия.

С помощью обратной связи (обратной афферентации) происходит замыкание регуляторного контура, объединение его элементов в замкнутую цепь — систему элементов. Только при наличии замкнутого контура регулирования возможно осуществление устойчивой регуляции параметров гомеостаза и приспособительных реакций.

Обратную связь подразделяют на отрицательную и положительную. В организме подавляющее число обратных связей — отрицательные. Это значит, что под влиянием поступающей по их каналам информации регулирующая система возвращает отклонившийся параметр к исходному (нормальному) значению. Таким образом, отрицательная обратная связь необходима для сохранения устойчивости уровня регулируемого показателя. В противоположность этому положительная обратная связь способствует изменению величины регулируемого параметра, переводу его на новый уровень. Так, в начале интенсивной мышечной нагрузки импульсы от рецепторов скелетных мышц способствует развитию увеличения уровня артериального кровяного давления.

Функционирование нейрогуморальных механизмов регуляции в организме не всегда направлено только на удержание гомеостатических констант на неизменном, строго стабильном уровне. В ряде случаев для организма жизненно важно, чтобы регулирующие системы перестроили свою работу и изменили величину гомеостатической константы, изменили так называемую «установочную точку» регулируемого параметра.

Установочная точка (англ. set point). Это тот уровень регулируемого параметра, на котором система стремится удерживать величину этого параметра.

Понимание наличия и направленности изменений установочной точки гомеостатических регуляций помогает определить причину возникновения патологических процессов в организме, прогнозировать их развитие и найти правильный путь лечения и профилактики.

Рассмотрим это на примере оценки температурных реакций организма. Наличие постоянных суточных изменений температуры сердцевины тела свидетельствует о наличии циркадианного ритма изменения величины установочной точки терморегуляции. Но особенно ярко заявляет о себе наличие изменений установочной точки температуры сердцевины тела при ряде заболеваний человека. Например, при развитии инфекционных заболеваний терморегуляторные центры нервной системы получают сигнализацию о появлении в организме бактериальных токсинов и перестраивают свою работу так, чтобы повысить уровень температуры тела.

Уровни регулирующих систем. Выделяют следующие уровни:

субклеточный (например, саморегуляция цепочек биохиических реакций, объединенных в биохимические циклы);

клеточный — регуляция внутриклеточных процессов с помощью биологически активных веществ (аутокриния) и метаболитов;

64

• тканевый (паракриния, креаторные связи — регуляция взаимодействия клеток: слипание, объединение в ткань, синхронизацию деления и функциональной активности);

органный — саморегуляция отдельных органов, функционирование их как единого целого. Такие регуляции осуществляются как за счет гуморальных механизмов (паракриния, креаторные связи), так и нервных клеток, тела которых находятся во внутриорганных вегетативных ганглиях. Эти нейроны взаимодействуют, составляя внутриорганные рефлекторные дуги. Вместе с тем через них реализуются и регуляторные влияния центральной нервной системы на внутренние органы;

организменный — регуляция гомеостаза, работы органов и систем, целостности организма, обеспечение целесообразных поведенческих реакций, приспособление организма к изменениям условий окружающей среды.

Таким образом, в организме существует много уровней регулирующих систем. Простейшие системы организма объединяются в более сложные, способные выполнять новые функции. При этом простые системы, как правило, подчиняются управляющим сигналам со стороны более сложных систем. Такое подчинение называют иерархией регулирующих систем.

Более подробно механизмы осуществления этих регуляций будут рассмотрены ниже.

Единство и отличительные особенности нервных и гуморальных регуляций.

Механизмы регуляции физиологических функций традиционно подразделяют на нервные и гуморальные, хотя в действительности они образуют единую регуляторную систему. Эти механизмы имеют многочисленные связи, как на уровне функционирования нервных центров, так и при передаче сигнальной информации эффекторным структурам. Достаточно сказать, что при осуществлении простейшего рефлекса - элементарного механизма нервных регуляций, передача сигнала с одной клетки на другую осуществляется посредством гуморальных факторов — нейромедиаторов.

Особенности нервных и гуморальных регуляций в организме. Гуморальные механизмы филогенетически более древние, они имеются даже у одноклеточных животных и приобретают большое разнообразие у многоклеточных и особенно у человека.

Нервные механизмы регуляций образовались филогенетически более поздно и формируются постепенно в онтогенезе человека. Для них характерна большая скорость и адресность передачи сигналов. Такие регуляции возможны лишь в многоклеточных структурах, имеющих нервные клетки, объединяющиеся в нервные цепи и составляющие рефлекторные дуги.

Гуморальные регуляции осуществляются путем распроранения сигнальных молекул в жидкостях организма по принципу "всем, всем, всем", или принципу "радиосвязи".

Нервные регуляции осуществляются по принципу "письмо с адресом", или "телеграфной связи". Сигнализация передается от нервных центров к строго определенным структурам, например к точно определенным мышечным волокнам или их группам в конкретной мышце. Только в этом случае возможны целенаправленные, координированные движения человека.

65

Гуморальные регуляции, как правило, осуществляются медленнее, чем нервные. Скорость проведения сигнала (потенциала действия) в быстрых нервных волокнах достигает 120 м/с, в то время как скорость транспорта сигнальной молекулы с током крови в артериях приблизительно в 200 раз, а в капиллярах — в тысячи раз меньше.

Приход нервного импульса к органу-эффектору практически мгновенно вызывает физиологический эффект (например, сокращение скелетной мышцы). Реакция на многие гормональные сигналы более медленная. Например, проявление ответной реакции на действие гормонов щитовидной железы и коры надпочечников происходит через десятки минут и даже часы.

Гуморальные механизмы имеют преимущественное значение в регуляции процессов обмена веществ, скорости деления клеток, роста и специализации тканей, полового созревания, адаптации к изменению условий внешней среды.

Нервная система в здоровом организме оказывает влияние на все гуморальные регуляции, осуществляет их коррекцию. Вместе с тем у нервной системы имеются свои специфические функции. Она регулирует жизненные процессы, требующие быстрых реакций, обеспечивает восприятие сигналов, приходящих от сенсорных рецепторов органов чувств, кожи и внутренних органов. Регулирует тонус и сокращения скелетных мышц, которые обеспечивают поддержание позы и перемещение тела в пространстве. Нервная система обеспечивает проявление таких психических функций, как ощущение, эмоции, мотивации, память, мышление, сознание, регулирует поведенческие реакции, направленные на достижение полезного приспособительного результата.

Характеристика механизмов гуморальной регуляции в организме.

Гуморальные регуляции осуществляются за счет передачи сигналов с помощью биологически активных веществ через жидкие среды организма. Сигнальную функцию в организме выполняют: гормоны, нейромедиаторы, простагландины, цитокины, факторы роста, эндотелин, азота оксид и ряд других веществ. Для выполнения их сигнальной функции достаточно очень малого количества этих веществ. Например, гормоны выполняют свою регуляторную роль при концентрации их в крови в пределах 10-7-10-10 моль/л.

Гуморальные регуляции подразделяют на эндокринные и местные.

Эндокринные регуляции осуществляются благодаря функционированию желез внутренней секреции (эндокринных желез), которые представляют собой специализированные органы, выделяющие гормоны. Гормоны — биологически активные вещества, вырабатываемые эндокринными железами, переносимые кровью

иоказывающие специфические регуляторные влияния на жизнедеятельность клеток

итканей. Отличительной особенностью эндокринных регуляций является то, что железы внутренней секреции выделяют гормоны в кровь и таким путем эти вещества доставляются практически ко всем органам и тканям. Однако ответная реакция на действие гормона может быть лишь со стороны тех клеток (мишеней), на мембранах, в цитозоле или ядре которых имеются рецепторы к соответствующему гормону.

Отличительной особенностью местных гуморальных регуляций является то, что биологически активные вещества, вырабатываемые клеткой, не поступают в кровоток, а действуют на продуцирующую их клетку и ее ближайшее окружение, распространяясь за счет диффузии по межклеточной жидкости. Такие регуляции подразделяют на регуляцию обмена веществ в клетке за счет метаболитов,

66

аутокринию, паракринию, юкстакринию, взаимодействия через межклеточные контакты.

Регуляция обмена веществ в клетке за счет метаболитов. Метаболиты — конечные и промежуточные продукты процессов обмена веществ в клетке. Участие метаболитов в регуляции клеточных процессов обусловлено наличием в обмене веществ цепочек функционально связанных биохимических реакций — биохимических циклов. Характерно, что уже в таких биохимических циклах имеются главные признаки биологических регуляций, наличие замкнутого контура регулирования и отрицательной обратной связи, обеспечивающей замыкание этого контура. Например, цепочки таких реакций используются при синтезе ферментов и веществ, участвующих в образовании аденозинтрифосфорной кислоты (АТФ). АТФвещество, в котором аккумулируется энергия, легко используемая клетками для самых разных процессов жизнедеятельности: движения, синтеза органических веществ, роста, транспорта веществ через клеточные мембраны.

Аутокринный механизм. При таком типе регуляций синтезированная в клетке сигнальная молекула выходит через клеточную мембрану в межклеточную жидкость и связывается с рецептором на наружной поверхности мембраны (рис. 4.2).

Рис. 4.2. Виды гуморальных регуляций в организме

Taким образом клетка реагирует на синтезированную в ней же сигнальную молекулу — лиганд. Присоединение лиганда к рецептору на мембране вызывает активацию этого рецептора, а он запускает целый каскад биохимических реакций в клетке, которые обеспечивают изменение ее жизнедеятельности. Аутокринная регуляция часто используется клетками иммунной и нервной систем. Этот путь ауторегуляции необходим для поддержания стабильного уровня секреции некоторых гормонов. Например, в предотвращении избыточной секреции инсулина β-клетками поджелудочной железы имеет значение тормозное действие секретируемого ими же гормона на активность этих клеток.

Паракринный механизм. Осуществляется путем секреции клеткой сигнальных молекул, которые выходят в межклеточную жидкость и влияют на жизнедеятельность соседних клеток (рис. 4.2). Отличительной чертой этого вида регуляций является то, что в передаче сигнала имеется этап диффузии молекулы лиганда через межклеточную жидкость от одной клетки к другим соседним клеткам. Так, клетки поджелудочной железы, секретирующие инсулин, влияют на клетки этой железы, секретирующие другой гормон — глюкагон. Факторы роста и интерлейкины влияют на клеточное деление, простагландины — на тонус гладких мышц,

67

мобилизацию Са2+ . Такой тип передачи сигналов важен в регуляции роста тканей при развитии эмбриона, заживлении ран, для роста поврежденных нервных волокон и при передаче возбуждения в синапсах.

Исследованиями последних лет показано, что некоторые клетки (особенно нервные) для сохранения своей жизнедеятельности должны постоянно получать специфические сигналы от соседних клеток. Среди таких специфических сигналов особенно важны вещества — факторы роста (NGF). При длительном отсутствии воздействия этих сигнальных молекул нервные клетки запускают программу самоуничтожения. Такой механизм клеточной смерти называют апоптозом.

Паракринная регуляция часто используется одновременно с аутокринной. Например, при передаче возбуждения в синапсах сигнальные молекулы, выделяемые нервным окончанием, связываются не только с рецепторами соседней клетки (на постсинаптической мембране), но и с рецепторами на мембране этого же нервного окончания (т.е. пресинаптической мембране).

Юкстакринный механизм. Осуществляется путем передачи сигнальных молекул непосредственно от наружной поверхности мембраны одной клетки на мембрану другой. Это происходит при условии непосредственного контакта (прикрепления, адгезионного сцепления) мембран двух клеток. Такое прикрепление происходит, например, при взаимодействии лейкоцитов и тромбоцитов с эндотелием кровеносных капилляров в месте, где имеется воспалительный процесс. На мембранах, выстилающих капилляры клеток, в месте воспаления появляются сигнальные молекулы, которые связываются с рецепторами определенных видов лейкоцитов. Такая связь приводит к активации прикрепления лейкоцитов к поверхности кровеносного сосуда. За этим может последовать целый комплекс биологических реакций, обеспечивающих переход лейкоцитов из капилляра в ткань

иподавление ими воспалительной реакции.

Взаимодействия через межклеточные контакты. Осуществляются через межмембранные соединения (вставочные диски, нексусы). В частности, весьма распространена передача сигнальных молекул и некоторых метаболитов через щелевые контакты — нексусы. При образовании нексусов особые белковые молекулы (коннексоны) клеточной мембраны объединяются по 6 штук так, что формируют кольцо с порой внутри. На мембране соседней клетки (точно напротив) формируется такое же кольцевидное образование с порой. Две центральные поры, объединяясь, формируют канал, пронизывающий мембраны соседних клеток.

Ширина канала достаточна для прохождения многих биологически активных веществ и метаболитов. Через нексусы свободно проходят ионы Са2+, являющиеся мощными регуляторами внутриклеточных процессов.

Благодаря высокой электропроводности нексусы способствуют распространению локальных токов между соседними клетками и формированию функционального единства ткани. Особенно выражены такие взаимодействия в клетках сердечной мышцы и гладких мышц. Нарушение состояния межклеточных контактов приводит к патологии сердца, изменению тонуса мышц сосудов, слабости сокращения матки и изменению ряда других регуляций.

Межклеточные контакты, выполняющие роль упрочения физической связи между мембранами, называют плотными соединениями и адгезионными поясами. Такие контакты могут иметь вид кругового пояса, проходящего между боковыми

68

поверхностями клетки. Уплотнение и увеличение прочности этих соединений обеспечивается прикреплением на поверхности мембран белков миозина, актинина, тропомиозина, винкулина и др. Плотные соединения способствуют объединению клеток в ткань, их слипанию и устойчивости ткани к механическим воздействиям. Они участвуют также в формировании барьерных образований организма. Плотные контакты особенно выражены между эндотелием, выстилающим сосуды головного мозга. Они уменьшают проницаемость этих сосудов для циркулирующих в крови веществ.

Во всех гуморальных регуляциях, осуществляемых с участием специфических сигнальных молекул, важную роль играют клеточные и внутриклеточные мембраны. Поэтому для понимания механизма гуморальных регуляций необходимо знать элементы физиологии клеточных мембран.

Рис.4.3. Схема строения клеточной мембраны

Особенности строения и свойства клеточных мембран. Для всех клеточных мембран характерен один принцип строения (рис. 4.3). Их основу составляют два слоя липидов (молекул жиров, среди которых больше всего фосфолипидов, но имеется также холестерол и гликолипиды). Молекулы мембранных липидов имеют головку (участок, притягивающий воду и стремящийся взаимодействовать с ней, называемый гидрофильным) и хвост, который является гидрофобным (отталкивается от молекул воды, избегает их соседства). В результате такого различия свойств головки и хвоста липидных молекул последние при попадании на поверхность воды выстраиваются рядами: головка к головке, хвост к хвосту и образуют двойной слой, в котором гидрофильные головки обращены к воде, а гидрофобные хвосты — друг к другу. Хвосты находятся внутри этого двойного слоя. Наличие липидного слоя образует замкнутое пространство, изолирует цитоплазму от окружающей водной среды и создает препятствие для прохождения воды и растворимых в ней веществ через клеточную мембрану. Толщина такого липидного бислоя составляет около 5 нм.

В состав мембран также входят белки. Их молекулы по объему и по массе в 40— 50 раз больше, чем молекулы мембранных липидов. За счет белков толщина мембраны достигает 7— 10 нм. Несмотря на то, что суммарные массы белков и липидов в большинстве мембран почти равны, количество молекул белков в мембране в десятки раз меньше, чем молекул липидов. Обычно белковые молекулы

69

расположены разрозненно. Они как бы растворены в мембране, могут в ней смещаться и изменять свое положение. Это послужило поводом к тому, что строение мембраны назвали жидкостно-мозаичным. Молекулы липидов тоже могут смещаться вдоль мембраны и даже перепрыгивать из одного липидного слоя в другой. Следовательно, мембрана имеет признаки текучести и вместе с тем обладает свойством самосборки, может восстанавливаться после повреждений за счет свойства липидных молекул выстраиваться в двойной липидный слой.

Белковые молекулы могут пронизывать всю мембрану так, что их концевые участки выступают за ее поперечные пределы. Такие белки называют трансмембранными или интегральными. Есть также белки, только частично погруженные в мембрану или располагающиеся на ее поверхности.

Белки клеточных мембран выполняют многочисленные функции. Для осуществления каждой функции геном клетки обеспечивает запуск синтеза специфического белка. Даже в относительно просто устроенной мембране эритроцита имеется около 100 разных белков. Среди важнейших функций мембранных белков отмечаются: 1) рецепторная — взаимодействие с сигнальными молекулами и передача сигнала в клетку; 2) транспортная — перенос веществ через мембраны и обеспечение обмена между цитозолем и окружающей средой. Существует несколько разновидностей белковых молекул (транслоказ), обеспечивающих трансмембранный транспорт. Среди них есть белки, формирующие каналы, которые пронизывают мембрану и через них идет диффузия определенных веществ между цитозолем и внеклеточным пространством. Такие каналы чаще всего ионоселективные, т.е. пропускают ионы только одного вещества. Есть также каналы, избирательность которых меньшая, например они пропускают ионы Na+ и К+, К+ и С1-. Есть также белки-переносчики, которые обеспечивают транспорт вещества через мембрану за счет изменения своего положения в этой мембране; 3) адгезивная

— белки совместно с углеводами участвуют в осуществлении адгезии (слипание, склеивание клеток при иммунных реакциях, объединение клеток в слои и ткани); 4) ферментативная — некоторые встроенные в мембрану белки выполняют роль катализаторов биохимических реакций, протекание которых возможно только в контакте с клеточными мембранами; 5) механическая — белки обеспечивают прочность и эластичность мембран, их связь с цитоскелетом.

Углеводы составляют лишь 2—10% от массы мембраны, количество их в разных клетках изменчиво. Благодаря углеводам осуществляются некоторые виды межклеточных взаимодействий, они принимают участие в узнавании клеткой чужеродных антигенов и совместно с белками создают своеобразную антигенную структуру поверхностной мембраны собственной клетки. По таким антигенам клетки узнают друг друга, объединяются в ткань и на короткое время слипаются для передачи сигнальных молекул. Соединения белков с сахарами называют гликопротеинами. Если же углеводы соединяются с липидами, то такие молекулы называют гликолипидами.

Благодаря взаимодействию входящих в мембрану веществ и относительной упорядоченности их расположения клеточная мембрана приобретает ряд свойств и функций, не сводимых к простой сумме свойств образующих ее веществ.

Функции клеточных мембран и механизмы их реализации. К основным

функциям клеточных мембран относятся: 1) создание оболочки (барьера),

70

Соседние файлы в папке Нормальная физиология