Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика курсач.docx
Скачиваний:
10
Добавлен:
23.12.2018
Размер:
832.29 Кб
Скачать

Паровые турбины - преимущества

  • работа паровых турбин возможна на различных видах топлива: газообразное, жидкое, твердое

  • высокая единичная мощность

  • свободный выбор теплоносителя

  • широкий диапазон мощностей

  • внушительный ресурс паровых турбин

Паровые турбины - недостатки

  • высокая инерционность паровых установок (долгое время пуска и останова)

  • дороговизна паровых турбин

  • низкий объем производимого электричества, в соотношении с объемом тепловой энергии

  • дорогостоящий ремонт паровых турбин

  • снижение экологических показателей, в случае использования тяжелых мазутов и твердого топлива

Тепловая энергетика производит 85% всей вырабатываемой в нашей стране электроэнергии и развивается за счет ввода в действие мощных электростанций с крупными энергоблоками, работающими навысоких и сверхвысоких параметрах пара: давление 130—240 кгс/см2, температура 535—565° С.

В настоящее время действуют конденсационные электростанции (ГРЭС) мощностью 3000 МВт с энергоблоками по 200, 300 и 800 МВт каждый.

Введены в действие головные образцы энергоблоков мощностью 500 и 800 МВт, проектируется блок 1200 МВт. В IX пятилетке развернулось строительство ГРЭС мощностью 3600 МВт и атомных электростанций мощностью 2000 МВт.

-JL Теплофикационные станции (ТЭЦ) в ных городах оборудуются турбинами по 100 и 250 МВт, мощность ТЭЦ достигает 1000 МВт. Электрические генераторы, с помощью которых механическая энергия превращается в электрическую, приводятся в действие паровыми или газовыми турбинами. Электрические генераторы небольшой мощности (до 1000 кВт) могут приводиться в действие двигателями внутреннего сгорания.

Пар для паровых турбин вырабатывается в котлах, где сжигают уголь, торф, газ или нефтепродукты. На атомных электростанциях роль котлов выполняют атомные реакторы. Схема простейшей конденсационной электростанции показана на рис. VII.19. Из парового котла 1 пар поступает в турбину 2, которая приводит в действие электрический генератор 3. Отработанный пар после турбины направляется в конденсатор 4, в который подается также охлаждающая вода циркуляционным насосом 5, в результате чего происходит конденсация пара. Конденсат перекачивается в бак 6 питательной воды конденсатным насосом 7. В этот же бак подается добавочная химически очищенная или обессоленная вода 8 для восполнения потерь. В паровой котел вода подается из бака 6 питательным насосом 9.

Коэффициент полезного действия турбины можно увеличить, повысив температуру и давление пара, поступающего в турбину, или снизив температуру и давление насыщенного пара на выходе из турбины. Последнее достигается путем конденсации выходящего из турбины пара, которая происходит в установленном для этой цели конденсаторе при подаче в него охлаждающей воды.

Поверхностный конденсатор состоит из пучков трубок диаметром 17—25 мм, длиной в несколько метров, которые выполняются из металлов, хорошо проводящих тепло (латунь, мельхиор). Концы трубок ввальцованы в металлические трубные доски, помещенные в корпусе конденсатора, который представляет собой металлическую емкость. Пространства между трубными досками и торцами корпуса образуют водяные камеры. В одноходовых конденсаторах вода поступает в переднюю водяную камеру, проходит через трубки и выходит в заднюю камеру, из которой отводится сливными трубами. В двухходовых конденсаторах вода дважды проходит по длине корпуса и отводится из передней камеры. В трехходовых конденсаторах вода проходит корпус три раза.

Выходящий из турбины пар поступает в паровое пространство конденсатора, заключенное между трубными досками, и конденсируется на внешней поверхности трубок, внутри которых проходит охлаждающая вода. Сконденсировавшийся пар (конденсат) собирается в нижней части корпуса конденсатора и отводится конденсатным насосом для повторного использования.

В тех случаях, когда пар не подлежит повторному использованию, например на геотермальных электростанциях, турбины оборудуются конденсаторами смешивающего типа. В них охлаждающая вода разбрызгивается при помощи специальных сопл; выходящий из турбины пар конденсируется на поверхности брызг и смешивается с охлаждающей водой.

Такие конденсаторы применяются также при использовании на тепловых электростанциях воздушно-конденсационных установок системы проф. Геллера (Венгерская Народная Республика). В этой установке в конденсатор смешивающего типа подается от радиаторного охладителя (сухой градирни) химически очищенная охлаждающая вода. После смешивания в конденсаторе с выходящим из турбины паром она нагревается и снова направляется на сухую градирню; небольшая часть этой химически очищенной воды направляется в котел. Главным преимуществом установки системы Геллера является почти полное отсутствие потерь воды.

Давление пара на выходе из турбины зависит от температуры, при которой происходит его конденсация. Чем ниже температура охлаждающей воды, подаваемой в конденсатор, тем ниже давление пара, выходящего из турбины (глубже вакуум в конденсаторе).

Зависимость давления в конденсаторе и к. п. д. турбины от температуры конденсации пара характеризуется цифрами, приведенными з табл. VIL4.

Из табл. VII 4 видно, что снижение температуры конденсации выходящего из турбины пара на 10° (с 40 до 30° С) и связанное с этим углубление вакуума на 3,2% приводит к повышению термического к. п. д турбины на 1,4%, что равносильно увеличению мощности турбины примерно на 2,7% при том же расходе пара и топлива.

Величина m называется кратностью охлаждения. Ее увеличение приводит к повышению к. п. д. турбины, но требует в то же время увеличения расхода охлаждающей воды и электроэнергии на ее перекачку. Для двухходовых конденсаторов оптимальная кратность охлаждения принимается в зависимости от температуры охлаждающей воды и напора циркуляционных насосов от 30 до 70.

Величина температурного напора конденсатора зависит от коэффициента теплопередачи его трубок, на который огромное влияние оказывает состояние поверхности трубок — их чистота. На стенках трубок могут образовываться отложения механического, биологического и химического происхождения, что связано с качеством охлаждающей воды. В результате образования таких отложений коэффициент теплопередачи трубок резко падает, а температурный напор конденсатора возрастает. Например, наличие органических отложений толщиной всего 0,1 мм может привести к повышению температурного напора конденсатора на 10° С. Кроме того, отложения в трубках конденсаторов и циркуляционных трубопроводах увеличивают гидравлическое сопротивление системы.

Из сказанного следует, что хотя для охлаждения конденсаторов используется техническая вода, качество которой не нормируется, необходимо принимать все возможные меры по снижению ее температуры и улучшению качества.

Соседние файлы в предмете Физика