Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Безопасность жизнедеятельности на производстве....doc
Скачиваний:
11
Добавлен:
18.11.2019
Размер:
6.16 Mб
Скачать

Глава 8

ЭЛЕКТРОБЕЗОПАСНОСТЬ

8.1. ДЕЙСТВИЕ ЭЛЕКТРИЧЕСКОГО ТОКА НА ЛЮДЕЙ И ЖИВОТНЫХ

Энерговооруженность труда в сельскохозяйственном производстве достаточно высока. Однако электрический ток представляет собой большую опасность для здоровья и жизни людей.

Установлено, что наибольшее число несчастных случаев происходит в результате допуска к работе с электрическими устройствами необученного персонала и пренебрежительного отношения работающих к средствам защиты.

Электробезопасность — это система организационных и технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного действия электрического тока, электрической дуги, электромагнитного поля и статического электричества.

При термическом действии тока возможны ожоги отдельных участков тела, нагрев до высокой температуры кровеносных сосудов, нервов, сердца, мозга и других органов, что вызывает в них серьезные функциональные расстройства. Причем согласно закону Джоуля—Ленца количество выделившейся теплоты прямо пропорционально квадрату силы тока, сопротивлению тела человека и времени воздействия тока на организм.

Электролитическое действие тока выражается в распаде молекул крови и лимфы на ионы. Изменяется физико-химический состав этих жидкостей, что приводит к нарушению жизненного процесса.

Биологическое действие тока заключается в раздражении и возбуждении тканей организма, а также в нарушении внутренних биоэлектрических процессов, протекающих в нормально действующем организме и связанных с его жизненными функциями. Прямое раздражающее действие тока вызывает непроизвольное сокращение мышечных тканей, через которые он проходит. При рефлекторном действии тока его необычное действие формирует своеобразные нервные импульсы, получая которые центральная нервная система может подать нецелесообразную исполнительную команду органам, в том числе и не лежащим на пути тока.

98

Различают электротравмы: местные (электрические ожоги, электрические знаки, металлизация кожи, электроофтальмия и механические повреждения), вызывающие локальное повреждение организма; общие, когда поражается весь организм из-за нарушения нормальной деятельности жизненно важных органов и систем.

Электрический ожог — самая распространенная электротравма. В зависимости от условий возникновения возможны два основных вида ожога: токовый (или контактный), возникающий при прохождении тока непосредственно через тело человека в результате контакта с токоведущими частями; дуговой, обусловленный воздействием на тело электрической дуги.

Контактный ожог чаще всего возникает при эксплуатации электроустановок с напряжением не более 2000 В. Максимальное количество теплоты выделяется в месте контакта провода с кожей, вызывая ее ожог. С увеличением силы тока начинают поражаться подкожные ткани. Токи высокой частоты больше повреждают внутренние органы при незначительных повреждениях кожного покрова.

Дуговой ожог наблюдают при использовании электроустановок различных напряжений. В этом случае дуга нередко поражает человека (особенно в установках более высоких напряжений), в результате чего через него проходит ток в несколько десятков или даже сотен ампер. В этом случае возможен летальный исход.

Электрические знаки представляют собой резко очерченные пятна серого или бледно-желтого цвета на поверхности тела человека, подвергшегося действию тока.

Металлизация кожи возникает в случае проникновения в верхние слои кожи мельчайших частичек металла, расплавившегося под действием электрической дуги.

Электроофтальмией называют воспаление наружных оболочек глаза (роговицы и конъкжтивы) из-за воздействия мощного потока ультрафиолетовых лучей, которые испускаются при наличии электрической дуги. Электроофтальмия развивается через 4...8 ч после облучения и продолжается в течение нескольких дней.

Механические повреждения — следствие резких непроизвольных сокращений мышц под действием тока, проходящего через тело. При этом возможны разрывы сухожилий, кожи, кровеносных сосудов и нервной ткани; иногда возникают вывихи суставов и даже переломы костей.

Электрический удар, который относят к общим электротравмам, можно условно разделить на четыре степени:

I — судорожное сокращение мышц;

II — судорожное сокращение мышц с потерей сознания;

III — потеря сознания с нарушением функций дыхания и сердечной деятельности (или того и другого вместе);

IV — клиническая смерть.

99

Длительность клинической смерти определяют временем с момента прекращения сердечной деятельности и дыхания до начала гибели клеток головного мозга. Этот отрезок времени составляет 4...6 мин, но иногда может быть и 7...8 мин. Если вовремя не оказать пострадавшему соответствующую помощь, то наступает биологическая смерть — необратимое явление, характеризующееся прекращением биологических процессов в клетках и тканях и распадом белковых структур.

Исход поражения электрическим током определяют следующими факторами: электрическим сопротивлением тела человека, силой протекающего через тело тока, временем воздействия тока, путем протекания тока, частотой и родом тока, индивидуальными особенностями организма человека.

Электрическое сопротивление различных тканей тела человека неодинаково. Например, при токе частотой 50 Гц удельное объемное сопротивление, Ом o м, составляет: для сухой кожи — 3000...20000; кости (без надкостницы)— 10000...2000000; жировой ткани — 30...60; мышечной ткани — 1,5...3; крови — 1...2; спинномозговой жидкости — 0,5...0,6.

Таким образом, кожа характеризуется очень большим удельным сопротивлением, которое служит главным фактором, определяющим сопротивление тела человека в целом.

Сопротивление тела человека Rчколеблется в пределах от 1000 до 100 000 Ом и равно сумме двух одинаковых активных сопротивлений наружного слоя кожи Rн, в совокупности составляющих наружное сопротивление тела человека и внутреннее сопротивление тела RB, т. е.

Rч = 2RH + RB.

Так как внутреннее сопротивление мало, не зависит от площади электродов, частоты тока, приложенного напряжения и примерно равно 500...700 Ом, то, следовательно, полное сопротивление тела человека зависит от сопротивления наружного слоя кожи.

Сопротивление кожи, в свою очередь, снижается (иногда значительно) при повреждении ее рогового слоя; увлажнении, в том числе вследствие потовыделения; загрязнении различными веществами, в особенности токопроводящими; увеличении площади поверхности и плотности контакта, силы проходящего тока и продолжительности его действия; приложенного напряжения. Так, при напряжении 10...38 В начинается пробой верхнего рогового слоя кожи, а при напряжении 127...220 В и выше кожа почти не влияет на сопротивление тела.

Основной поражающий фактор электрического тока — сила тока, проходящего через тело человека. Переменный ток частотой 50 Гц и силой 0,5...1,5 мА вызывает при прохождении через организм ощутимые раздражения в виде слабого "зуда" и легких покалываний.

100

Указанные значения тока — это граница, или порог, с которого начинается область ощутимых токов, поэтому ток, являющийся наименее ощутимым, называют пороговым ощутимым током.

Электрический ток, вызывающий при прохождении через организм непреодолимые судорожные сокращения мышц руки, в которой зажат проводник, называют неотпускающим током, а его наименьшее значение — пороговым неотпускающим током.

Значения пороговых неотпускающих токов у разных людей неодинаковы. Они различны также для мужчин, женщин, детей и в среднем при частоте тока 50 Гц равны соответственно 16, 11 и 8 мА. При их превышении действие тока распространяется на мышцы туловища, затрудняя дыхание и работу сердца, что приводит к потере сознания через некоторое время.

Прохождение тока через организм может вызвать фибрилляцию сердца — хаотические разновременные сокращения волокон сердечной мышцы (фибрилл), при которых прекращается кровообращение. Наименьшее значение такого тока (100 мА при частоте 50 Гц) называют пороговым фибрилляционным током. Опасность возникновения фибрилляции возрастает при прохождении тока через сердце во время Т-фазы кардиоцикла, когда заканчивается сокращение желудочков и они переходят в расслабленное состояние.

С увеличением длительности протекания тока сопротивление организма заметно снижается, что связано с происходящим под действием тока усилением кровоснабжения участков кожи под электродами, потоотделением и т. п.

Опасность поражения электрическим током сильно увеличивается при прохождении его через жизненно важные органы: сердце, легкие, головной мозг. Однако рефлекторное воздействие тока на них происходит и при иных путях его прохождения, хотя опасность поражения при этом резко снижается. К наиболее опасным таким путям относят петли "голова—руки" и "голова—ноги", к наименее — петля "нога—нога".

С увеличением частоты переменного тока от 0 до 50 Гц опасность поражения возрастает, тогда как с дальнейшим ростом частоты тока опасность поражения снижается и полностью исчезает при частоте 450...500 кГц, хотя такие токи вызывают ожоги при возникновении электрической дуги и прохождении непосредственно через человека. Постоянный ток безопаснее переменного с частотой 50 Гц примерно на одну ступень шкалы номинальных напряжений, т. е. постоянный ток напряжением 380 В действует на человека приблизительно так же, как переменный напряжением 220 В, а действие постоянного тока напряжением 220 В приблизительно равно действию переменного тока напряжением 127 В и т. д. Такое соотношение сохраняется до напряжения 500 В, при более высоких напряжениях постоянный ток становится опаснее переменного с частотой 50 Гц.

101

Большое значение для исхода поражения имеет психическое состояние человека. Электрические удары легче переносятся здоровыми и физически крепкими людьми. Опасность поражения увеличивается при наличии заболеваний сердца, органов дыхания и нервной системы, а также в состоянии алкогольного или наркотического опьянения.

Установлено, что опасное действие электрического тока тем меньше, чем больше живая масса животного. Однако сопротивление их организма гораздо меньше, чем сопротивление организма человека, поэтому при одном и том же напряжении через организм животного проходит гораздо больший ток, чем через организм человека. Например, сопротивление организма крупного рогатого скота между передними и задними ногами составляет в среднем 400...600 Ом, а при падении животного снижается до 50...100 Ом в зависимости от влажности шерсти. Поэтому действие тока напряжением 25...30 В в течение 5 с поражает животных.

Наименее опасен для животных путь тока от одной задней конечности к другой. Установлено, что собаки остаются живыми при прохождении по этой петле тока напряжением 900 В в течение 12с. Однако даже небольшое постоянно действующее напряжение вызывает снижение продуктивности животных. Так, при напряжении 4...6 В молокоотдача у коров уменьшается на 20...40%.

102

98 :: 99 :: 100 :: 101 :: 102 :: Содержание

102 :: 103 :: Содержание

8.2. КЛАССИФИКАЦИЯ ЭЛЕКТРОУСТАНОВОК И ПОМЕЩЕНИЙ ПО ОПАСНОСТИ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ

Электроустановки классифицируют по напряжению: с номинальным напряжением до 1000 В и свыше 1000 В.

Безопасность обслуживания электрооборудования зависит от факторов окружающей его среды. С учетом этих факторов, а также их наличия или отсутствия все помещения по опасности поражения электрическим током делят на три класса:

первый — помещения без повышенной опасности, в которых отсутствуют признаки помещений двух других классов;

второй — помещения с повышенной опасностью, характеризующиеся хотя бы одним из перечисленных признаков: относительной влажностью воздуха, длительно превышающей 75 %; наличием токопроводящей пыли и токопроводящих полов (земляных, металлических, сырых деревянных и т. п.); высокой температурой воздуха, длительно превышающей 30 °С, или периодически (более одних суток) 35 °С, или более 40 °С кратковременно; возможностью одновременного прикосновения человека к металлическим корпусам электрооборудования с одной стороны и к соединенным с землей металлоконструкциям с другой;

102

третий — помещения особо опасные, характеризующиеся следующими признаками: относительной влажностью воздуха, близкой к 100 % (визуально определяют наличием конденсата на внутренней поверхности строительных конструкций зданий и помещений); химически агрессивной средой; наличием одновременно двух или более признаков помещений с повышенной опасностью.

К первому классу относят сухие отапливаемые помещения, в которых электроприборы установлены достаточно далеко от металлических частей систем отопления, канализации и водопровода (рабочие кабинеты, комнаты отдыха, цыплятники, инкубатории и т. п.); ко второму — животноводческие помещения с регулируемым микроклиматом, склады с земляными полами и т.п.; к третьему — кормоцехи, теплицы, склады пестицидов и удобрений, моечные, животноводческие помещения без устройств регулирования микроклимата.

103

102 :: 103 :: Содержание

103 :: 104 :: Содержание

8.3. КЛАССИФИКАЦИЯ ЭЛЕКТРОТЕХНИЧЕСКИХ ИЗДЕЛИЙ ПО СПОСОБУ ЗАЩИТЫ ЧЕЛОВЕКА ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ

Электротехнические изделия по способу защиты человека от поражения электрическим током делят на пять классов: 0, 0I, I, II, III.

К классу 0 относят изделия с номинальным напряжением более 42 В с рабочей изоляцией и не имеющих приспособлений для заземления (зануления). Такие изделия используют в качестве встроенных в другие, корпус которых заземлен. Бытовые приборы изготавливают по классу 0, так как они предназначены для работы в помещениях без повышенной опасности.

Класс 0I включает в себя изделия с рабочей изоляцией, элементом заземления (винт, болт). У провода для присоединения к источнику питания нет заземляющей жилы. В качестве элемента заземления нельзя использовать винты, болты или шпильки, предназначенные для крепления изделия или его составных частей.

Класс I включает в себя изделия с рабочей изоляцией, элементом для заземления и проводом питания с заземляющей (зануляющей) жилой и штепсельной вилкой с заземляющим контактом.

К классу II относят изделия, имеющие у всех доступных прикосновению частей двойную или усиленную изоляцию относительно частей, нормально находящихся под напряжением, и не имеющие элементов для заземления. Усиленной называют такую однослойную изоляцию, которая обеспечивает ту же степень защиты, что и двойная. Такую изоляцию применяют в тех случаях,

103

когда использование двойной изоляции по каким-либо причинам затруднено.

Класс III представляет собой изделия без внутренних и внешних электрических цепей с напряжением выше 42 В. При питании от внешнего источника изделия относят к классу III только в случаях, если их присоединяют непосредственно к источнику питания с напряжением не выше 42 В, у которого на холостом ходу оно не превышает 50 В, или если при питании через трансформатор или преобразователь частоты его входная и выходная обмотки не имеют между собой гальванической связи, а имеют двойную или усиленную изоляцию.

104

103 :: 104 :: Содержание

104 :: 105 :: 106 :: 107 :: 108 :: Содержание

8.4. АНАЛИЗ ОПАСНОСТИ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ В ЗАВИСИМОСТИ ОТ СХЕМ ВКЛЮЧЕНИЯ ЧЕЛОВЕКА В СЕТЬ

Все случаи поражения человека током в результате электрического удара — следствие прикосновения не менее чем к двум точкам электрической цепи, между которыми существует разность потенциалов. Опасность такого прикосновения во многом зависит от особенностей электрической сети и схемы включения в нее человека. Определив силу тока /ч, проходящего через человека с учетом этих факторов, можно выбрать соответствующие защитные меры для снижения опасности поражения.

Двухфазное включение человека в цепь тока (рис. 8.1, а). Оно происходит довольно редко, но более опасно по сравнению с однофазным, так как к телу прикладывается наибольшее в данной сети напряжение — линейное, а сила тока, А, проходящего через человека, не зависит от схемы сети, режима ее нейтрали и других факторов, т. е.

I = Uл/Rч = 3Uф/Rч,

где Uл и Uф —линейное и фазное напряжение, В; Rчсопротивление тела человека, Ом (согласно Правилам устройства электроустановок в расчетах Rч принимают равным 1000 Ом).

Случаи двухфазного прикосновения могут произойти при работе с электрооборудованием без снятия напряжения, например, при замене сгоревшего предохранителя на вводе в здание, применении диэлектрических перчаток с разрывами резины, присоединении кабеля к незащищенным зажимам сварочного трансформатора и т. п.

Однофазное включение. На ток, проходящий через человека, влияют различные факторы, что снижает опасность поражения по сравнению с двухфазным прикосновением.

104

Рис. 8.1. Схемы возможного включения человека в сеть трехфазного тока: а — двухфазное прикосновение; б— однофазное прикосновение в сети с заземленной нейтралью; в — однофазное прикосновение в сети с изолированной нейтралью

В однофазной двухпроводной сети, изолированной от земли, силу тока, А, проходящего через человека, при равенстве сопротивления изоляции проводов относительно земли r1 = r2 = r, определяют по формуле

Iч = U/(2Rч + r),

где U— напряжение сети, В; r — сопротивление изоляции, Ом.

В трехпроводной сети с изолированной нейтралью при r1 = r2 = r3 = rток пойдет от места контакта через тело человека, обувь, пол и несовершенную изоляцию к другим фазам (рис. 8.1, б). Тогда

Iч = Uф/(Ro + r/3),

где Rо — общее сопротивление, Ом; RO = Rч + Rоп + Rп; Rоб — сопротивление обуви, см: для резиновой обуви Rоб ≥ 50 000 Ом; Rnсопротивление пола, Ом: для сухого деревянного пола, Rп = 60 000 Ом; г — сопротивление изоляции проводов, Ом (согласно ПУЭ должно быть не менее 0,5 МОм на фазу участка сети напряжением до 1000 В).

105

В трехфазных четырехпроводных сетях ток пойдет через человека, его обувь, пол, заземление нейтрали источника и нулевой провод (рис. 8.1, в). Сила тока, А, проходящего через человека,

Iч=Uф(Rо + Rн),

где RHсопротивление заземления нейтрали, Ом. Пренебрегая сопротивлением RH, получим:

Iч≈UФ/R0.

На предприятиях сельского хозяйства в основном применяют четырехпроводные электрические сети с глухозаземленной нейтралью напряжением до 1000 В. Их преимущество состоит в том, что посредством их можно получить два рабочих напряжения: линейное Uл = 380 В и фазное Uф = 220 В. К таким сетям не предъявляют высоких требований к качеству изоляции проводов и их применяют при большой разветвленности сети. Несколько реже используют трехпроводную сеть с изолированной нейтралью при напряжении до 1000В —более безопасную, если сопротивление изоляции проводов поддерживается на высоком уровне.

Напряжение прикосновения. Оно возникает в результате касания находящихся под напряжением электроустановок или металлических частей оборудования.

Если электрический ток течет через стержневой заземлитель, погруженный в землю так, что его верхний конец расположен на уровне земли, то напряжение прикосновения, В,

где I3 — сила тока замыкания на землю, А; ρ — удельное сопротивление основания (грунта, пола и т. д.), на котором находится человек, Ом*м; l и d — длина и диаметр заземлителя, м; х — расстояние от человека до центра заземлителя, м; а — коэффициент напряжения прикосновения.

Тогда

α = Rч/(Rч + Rоб + Rn) = Rч/Rо.

Пренебрегая сопротивлением обуви (когда она мокрая или при ее отсутствии), можно записать для следующих случаев:

ступни ног удалены одна относительно другой на расстоянии шага

α=1/(1 + 1,5ρ/Rч);

106

ступни ног находятся рядом

α=1/(1 + 2ρ/Rч).

Шаговое напряжение. Это напряжение Uш на теле человека при положении ног в точках поля растекания тока с заземлителя или от упавшего на землю провода, где находятся ступни, когда человек идет в направлении заземлителя (провода) или от него (рис. 8.2).

Если одна нога находится на расстоянии х от центра заземлителя, то другая — на расстоянии х + а, где а — длина шага. Обычно в расчетах принимают а = 0,8 м.

Максимальное напряжение в этом случае возникает в точке замыкания тока на землю, а по мере удаления от нее оно снижается по закону гиперболы. Считают, что на расстоянии 20 м от места замыкания потенциал земли равен нулю.

Шаговое напряжение, В,

Uш =

Iзρa

2πx(x+a)

 

.

Даже при небольшом шаговом напряжении (50...80 В) может возникнуть непроизвольное судорожное сокращение мышц ног и,

Рис. 8.2. Схема возникновения шагового напряжения

107

как следствие этого — падение человека на землю. При этом он одновременно касается земли руками и ногами, расстояние между которыми больше, чем длина шага, поэтому действующее напряжение увеличивается. Кроме того, в таком положении человека образуется новый путь прохождения тока, затрагивающий жизненно важные органы. При этом создается реальная угроза смертельного поражения.

При уменьшении длины шага шаговое напряжение снижается. Поэтому, для того чтобы выбраться из зоны действия шагового напряжения, следует передвигаться прыжками на одной ноге или на двух сомкнутых ногах или как можно более короткими шагами (в последнем случае допустимым считают напряжение не более 40 В).

108

104 :: 105 :: 106 :: 107 :: 108 :: Содержание

108 :: 109 :: Содержание

8.5. МЕРОПРИЯТИЯ ПО ЗАЩИТЕ ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ

Все существующие мероприятия, обеспечивающие безопасность использования электроэнергии, можно условно разделить на три группы.

Организационные мероприятия.

Они включают в себя:

правильный подбор персонала, обслуживающего электроустановки (запрещение использования труда лиц моложе 18 лет, а также не обученных и не прошедших медицинское освидетельствование для работы данного вида);

обучение правилам безопасности при обслуживании электроустановок, т. е. проведение специального обучения для выполнения работ с повышенной опасностью, аттестации, инструктажей по безопасности труда, разработка и издание инструкций по охране труда, применение средств пропаганды правил электробезопасности (плакатов, видеофильмов и пр.);

назначение ответственных за электрохозяйство лиц;

контроль за правильностью устройства электропроводок и установкой электрооборудования в соответствии с ПУЭ;

проведение периодических осмотров, измерений и испытаний электрооборудования (в сухих помещениях — 1 раз в два года, в сырых — ежегодно, при этом сопротивление рабочей изоляции проводов, кабелей и электрооборудования в процессе эксплуатации не должно быть менее 0,5 и 2 М Ом для двойной или усиленной изоляции), а в случае несоответствия предъявляемым требованиям — его ремонта;

контроль за надежностью СИЗ от поражения электрическим током.

Технические мероприятия. К ним относят:

применение устройств (предохранителей, отключающих реле и т. п.) защиты электроустановок и сетей от перегрузок, а также токов коротких замыканий;

108

защиту людей и животных от прикосновения к токоведущим частям оборудования посредством применения глухого ограждения высоковольтного оборудования и размещения его в отдельных зданиях, изоляции токоведущих частей электрооборудования, установки защитных ограждений, расположения электроприборов на недоступной для людей и животных (более 2 м) высоте;

защита от поражения электрическим током при переходе напряжения на металлические корпуса электроустановок; устройство защитного заземления; зануление электроустановок в сетях с глухо-заземленной нейтралью; применение защитного отключения; использование электрооборудования с малым (менее 42 В) напряжением; выравнивание потенциалов электрооборудования и земли в местах нахождения людей и животных; изоляция электроустановок и электродвигателей от корпусов рабочих машин; применение диэлектрических настилов и изолирующих площадок.

Применение индивидуальных электрозащитных средств. Их подразделяют на основные и дополнительные изолирующие защитные средства, а также на вспомогательные приспособления.

Основные изолирующие защитные средства имеют изоляцию, способную длительно выдерживать рабочее напряжение электроустановки, обеспечивая безопасность человека при контакте с токоведущими частями. К таким средствам относят:

в электроустановках с напряжением до 1000 В — диэлектрические перчатки, изолирующие штанги, изолирующие и токоизмерительные клещи, слесарно-монтажный инструмент с изолированными рукоятками, а также указатели напряжения;

в электроустановках с напряжением свыше 1000 В — изолирующие штанги, изолирующие и электроизмерительные клещи, указатели напряжения.

Дополнительные защитные средства не могут самостоятельно защитить человека от поражения электрическим током, но при совместном использовании они усиливают изолирующее действие основных защитных средств. К дополнительным средствам защиты при работе в электроустановках до 1000 В относят диэлектрические галоши, коврики, подставки и площадки; в электроустановках свыше 1000 В — диэлектрические перчатки, боты и коврики, а также диэлектрические основания.

Необходимо отметить, что при отсутствии какого-либо дополнительного средства защиты (например, диэлектрического коврика) нельзя применять ни одно из основных.

Вспомогательные приспособления предназначены для защиты людей от сопутствующих опасных и вредных производственных факторов при работе с электрооборудованием и, кроме того, от падения с высоты. К ним относят экранирующие комплекты и устройства для защиты от воздействия электрического поля, противогазы, защитные каски, страховочные канаты, монтерские когти, предохранительные монтерские пояса и т. п.

109

108 :: 109 :: Содержание

110 :: 111 :: 112 :: 113 :: Содержание

8.6. ЗАЩИТНОЕ ЗАЗЕМЛЕНИЕ

Защитным заземлением называют преднамеренное электрическое соединение с землей или ее эквивалентом металлических не-токоведущих частей электроустановок, которые могут оказаться под напряжением.

Заземляют все электроустановки, работающие при номинальном напряжении переменного тока более 50 В, постоянного и выпрямленного тока более 120 В (кроме светильников, подвешенных в помещениях без повышенной опасности поражения электрическим током на высоте не менее 2 м при условии изоляции крючка для подвески светильника пластмассовой трубкой).

Область применения защитного заземления:

сети напряжением до 1000 В —трехфазные трехпроводные с изолированной нейтралью, однофазные двухпроводные, изолированные от земли, а также двухпроводные постоянного тока с изолированной средней точкой обмоток источника тока;

сети переменного и постоянного тока с любым режимом нейтральной или средней точки обмоток источников тока напряжением свыше 1000 В.

Заземляющее устройство (рис. 8.3) состоит из заземлителя и проводника, соединяющего металлические части электроустановок с заземлителем. В качестве искусственных заземлителей применяют заглубляемые в землю стальные трубы, уголки, штыри или полосы; естественных — уложенные в земле водопроводные или канализационные трубы, кабели с металлической оболочкой (кроме алюминиевой), обсадные трубы артезианских колодцев и т. п.

Принцип действия защитного заземления заключается в снижении до безопасных значений напряжений прикосновения и шага в случае появления электрического потенциала вследствие замыкания тока на металлические корпуса электрооборудования, разряда молнии или других причин.

Так как сопротивление тела человека Rч значительно больше сопротивления заземляющего устройства Rз, то сила тока Iч, протекающего через человека, оказывается намного меньшей, чем сила тока /з, стекающего на землю через заземлитель. Однако в этом случае полностью опасность поражения током не исключают, что относят к первому недостатку защитного заземления. Второй недостаток — значительное увеличение опасности поражения током при обрыве в цепи заземляющего устройства или ослаблении крепления заземляющего проводника. Третий недостаток проявляется в трехфазных сетях с изолированной нейтралью при хорошем состоянии изоляции двух фаз электроустановки и пробое изоляции третьей. В этом случае напряжение первых двух фаз относительно земли возрастает с фазного до линейного, что может вызвать повреждение изоляции в другой электроустановке со своим защитным заземлением. Возникает большой ток замыкания на землю, близкий по

110

Рис. 8.3. Принципиальная схема защитного заземления

значению к току короткого замыкания двух фаз. Напряжение на корпусах обеих электроустановок зависит от линейного напряжения и приводит к появлению опасности поражения током даже при нормативных значениях сопротивления заземляющих устройств.

Каждую электроустановку следует присоединять к заземляющей магистрали отдельным проводником. Последовательное соединение заземляемых частей не допускается. Соединения должны быть надежными, обычно их выполняют сваркой или с помощью болтов. Не разрешается прокладывать в земле неизолированные алюминиевые проводники из-за их быстрой коррозии. С целью защиты от нее заземляющие проводники в сырых помещениях устраивают на расстоянии не ближе 10 мм от стен.

Наибольшие допустимые значения сопротивления заземляющего устройства Rз для электроустановок с напряжением до 1000 В составляют:

10 Ом при суммарной мощности генераторов или трансформаторов, питающих данную сеть, не более 100 кВ· А;

4 Ом во всех остальных случаях.

111

Рис. 8.4. Схемы заземлителей: а — стержневого вертикального круглого сечения у поверхности земли; б— стержневого круглого сечения, вертикально заглубленного в землю; в — горизонтальной полосы, заглубленной в землю

Сопротивление заземляющего устройства можно определять двумя методами: расчетным (теоретическим) и практическим.

Сопротивление, Ом, стержневого вертикального заземлителя с диаметром Округлого сечения у поверхности земли (рис. 8.4, а):

Rз= 0,366

ρ

l

  lg

2l2

bh

  ,

где ρ — удельное сопротивление грунта; Ом*м; l и b — длина и ширина заземлителя, м; h — расстояние от поверхности земли до середины заземлителя, м.

Значения р могут быть от 1 (морская вода) до 106 (граниты). При колебаниях влажности грунтов сильно изменяется их удельное сопротивление, например, при снижении влажности красной глины с 20 до 10 % оно возрастает в 13 раз. Значительно увеличивается ρ в случае промерзания грунта. Вот почему стержневые заземлители рекомендуют забивать на глубину, большую глубины промерзания, и по возможности ниже уровня грунтовых вод.

Сопротивление, Ом, стержневого вертикально заглубленного заземлителя круглого сечения (рис. 8.4, б):

Rз = 0,366

ρ

l

  lg

2l

d

  + 0,5lg

4h + 1

4h - 1

  .

Сопротивление заземлителя, Ом, выполненного в виде горизонтальной полосы (рис. 8.4, в), заглубленной в землю,

Rз = 0,366

ρ

l

  lg

2l2

bh

 

112

Число стержней nз в контуре заземления:

nз =

Rзkc

Rн.зnэ

 

где kc — коэффициент сезонности (для средней полосы России kc=l,8), Лц.з — нормативное сопротивление заземлителя, Ом; nэ — коэффициент экранирования, зависящий от формы и длины заземлителей, их числа в контуре, расстояния между ними; при снижении числа заземлителей от 20 до 2 коэффициент пэ изменяется от 0,09 до 0,94.

Рис. 8.5. Схема измерения сопротивления заземления с помощью вольтметра и амперметра

Сопротивление заземления проверяют специальными приборами-измерителями М-416, МС-08 и др. Если его контролируют не в период максимального промерзания грунта, то показания прибора следует умножить на коэффициент сезонности.

При отсутствии специальных приборов можно использовать вольтметр и амперметр. В этом случае в качестве источника тока служит трансформатор (обычный сварочный) мощностью около 5 кВт со вторичным напряжением 36...120 В, который может обеспечить достаточно большую силу тока (I= 15...20 А), так как при малых значениях I не достигают необходимой точности замеров.

Для измерения забивают дополнительный заземлитель Дз и зонд Зз (рис. 8.5). Сопротивление заземлителя определяют по закону Ома:

Rз = U/I.

С помощью омметров М-372 обычно измеряют сопротивление цепи "оборудование — заземлитель". Сопротивление контура вместе с сопротивлением проводника и есть полное сопротивление заземляющего устройства.

Сопротивление заземляющих устройств измеряют не реже 1 раза в год. Внешний осмотр проводят не реже 1 раза в 6 мес, а в помещениях с повышенной опасностью поражения электрическим током и особо опасных — не реже 1 раза в 3 мес.

113

110 :: 111 :: 112 :: 113 :: Содержание

113 :: 114 :: 115 :: 116 :: Содержание

8.7. ЗАНУЛЕНИЕ

Зануление — это преднамеренное соединение с нулевым защитным проводником металлических нетоковедущих частей электрооборудования, которые могут оказаться под напряжением. Зануление применяют в трехфазных четырехпроводных сетях напряжением до 1000 В с глухозаземленной нейтральной точкой

113

обмотки источника тока или ее эквивалентом (сети напряжением 380/220 В, 220/127 В и 660/380 В). Эквивалентом нейтральной точки источника тока могут служить: средняя точка источника постоянного тока, заземленный вывод источника однофазного тока и т. п.

Принцип действия защитного зануления заключается в превращении замыкания на корпус в однофазное короткое замыкание (между фазным и нулевым защитным проводниками) с целью создания большого тока, способного обеспечить срабатывание защиты и отключение поврежденной электроустановки от питающей ее сети (рис. 8.6). Такой защитой могут служит предохранители, магнитные пускатели со встроенной тепловой защитой, максимальные расцепители автоматических выключателей, срабатывающие при коротком замыкании в цепи тока, и т. п. Так как оказавшиеся под напряжением нетоковедущие металлические части оборудования заземлены через нулевой защитный проводник, то до момента отключения поврежденной электроустановки от сети их напряжение относительно

Рис. 8.6. Принципиальная схема зануления: R0 — сопротивление заземления нейтрали источника тока; Rп — сопротивление повторного заземления нулевого защитного проводника; Iк — ток короткого замыкания; Iн — часть тока короткого замыкания, протекающая через нулевой проводник; I з — часть тока короткого замыкания, протекающая через землю; Uф и Ux фазное и линейное напряжения электросети

114

земли снижается. Сечение и материал нулевого защитного проводника выбирают из условия, чтобы его проводимость была не менее 50 % полной проводимости фазного провода.

Для обеспечения автоматического отключения аварийного оборудования сопротивление цепи короткого замыкания должно быть достаточно малым. Сопротивление петли "фаза — нуль" следует проверять ежегодно, и оно не должно превышать 2 Ом.

Также необходимо правильно подобрать плавкие вставки предохранителей. Например, при их подборе по номинальному току электроустановки во время пуска электродвигателей предохранители сработают, так как значение пускового тока электродвигателей в 5...7 раз превышает их номинальный ток.

Сила пускового тока электродвигателя, А,

Iп =

100kпРэ

√3 Uлcosφηэ

 

где kп — коэффициент кратности пускового тока: для трехфазных асинхронных электродвигателей kп = 5...7; Рэмощность электродвигателя, кВт; Uл — фазное напряжение электросети, В; cosφ и ηэ — коэффициенты мощности и полезного действия электродвигателя (в расчетах cos φ = 0,8; значения ηэ определяют по паспорту электродвигателя).

Сила расчетного тока предохранителей, А,

Iр.п = 0,4Iп.

При замыкании фазы на зануленный корпус электроустановка автоматически отключится, если ток однофазного короткого замыкания Iк, удовлетворяет условию:

IкkтIн

где kткоэффициент кратности тока: при защите автоматическим выключателем, срабатывающим без выдержки времени, kт1,25. ..1,4; при защите предохранителями KТ≥ 3 (во взрывоопасных помещениях kт≥4); при защите автоматическим выключателем с обратно зависимой от тока характеристикой kт ≥ 3 (во взрывоопасных помещениях kт≥6); Iн — номинальный ток плавкой вставки предохранителя или ток срабатывания автоматического выключателя.

К недостаткам зануления относят лишение при обрыве нулевого провода защиты электропотребителей, находящихся за точкой обрыва. При пробое изоляции за этой точкой на всех электроустановках будет фазное напряжение. Поэтому нулевой провод надо прокладывать так же тщательно, как и фазные, у него должна быть одинаковая изоляция. На животноводческих фермах и птицефабриках, а также на линиях со стальными проводами нулевой провод должен быть равного с фазными сечения. Не допускается

115

установка на нулевом проводе предохранителей или однополюсных выключателей. На случай обрыва нулевой провод заземляют на воздушных линиях через каждые 200 м, на концах магистралей, а также перед вводом в здание. От электроприемников, расположенных вне здания и подлежащих занулению, до ближайшего повторного заземления или до заземления нейтрали не должно быть более 100м.

116

113 :: 114 :: 115 :: 116 :: Содержание

116 :: 117 :: Содержание

8.8. ЗАЩИТНОЕ ОТКЛЮЧЕНИЕ

Защитным отключением называют быстродействующую защиту, обеспечивающую автоматическое отключение электроустановки напряжением до 1000В при возникновении в ней опасности поражения электрическим током. Такая опасность может возникнуть при замыкании фазы на корпус, снижении сопротивления изоляции ниже определенного значения и в случае прикосновения человека к находящейся под напряжением токоведущей части. В таких ситуациях мерой защиты может быть лишь быстрое отключение соответствующего участка электросети в целях разрыва цепи тока через человека.

Время срабатывания современных устройств защитного отключения (УЗО) не превышает 0,03...0,04 с. При уменьшении времени протекания тока через человека снижается опасность поражения. Так, в бытовых электроустановках переменного тока частотой 50 Гц напряжением до 1000В практически безопасным можно считать действие напряжения прикосновения 100, 200 и 220 В соответственно в течение 0,2, 0,1 и 0,01...0,03 с.

Устройства защитного отключения применяют в сетях любого напряжения и с любым режимом нейтрали, хотя наиболее они распространены в сетях до 1000 В. В сетях с заземленной нейтралью УЗО обеспечивают безопасность при замыкании фазы на корпус и при снижении сопротивления изоляции сети ниже некоторого значения, а в сетях с изолированной нейтралью — еще и безопасность прикосновения человека к находящейся под напряжением токоведущей части электроустановки. Однако эти свойства также зависят от типа устройства защитного отключения и параметров электроустановки.

Различают несколько типов УЗО в зависимости от входных величин, на которые они реагируют. К таким величинам относят: потенциал корпуса электроустановки, ток замыкания на землю, напряжение нулевой последовательности, ток нулевой последовательности, напряжение фазы относительно земли, оперативный ток.

На рисунке 8.7 приведена принципиальная схема УЗО, реагирующего на напряжение корпуса относительно земли. Преобразователем служит реле максимального напряжения KV, включенное между

116

Рис. 8.7. Схема УЗО, реагирующего на напряжение корпуса электроустановки относительно земли: Rзсопротивление заземлителя; М — электродвигатель

защищаемым корпусом электроустановки и вспомогательным заземлителем Rв. Электроды вспомогательного заземлителя размещают в зоне нулевого потенциала на расстоянии не ближе 15...20м от заземлителей корпуса или нулевого провода. При пробое фазы на корпус на нем появляется напряжение относительно земли. Если оно превысит 12...24 В, то срабатывает реле напряжения К V и разрывает цепь катушки управления КМ. Сердечник катушки освобождается и размыкает контакты КМ1...3 магнитного пускателя. Кнопка SB служит для контроля исправности УЗО (при включении его в работу, а также периодически не реже одного раза в квартал). Защитное отключение эффективно в любых электроустановках, но особенно в случаях, когда по каким-либо причинам трудно выполнить заземление или зануление или при высокой вероятности случайного прикосновения к токоведущим частям (во время эксплуатации передвижных электроустановок, а также стационарных, расположенных в районах с плохо проводящими грунтами и т. п.).

117

116 :: 117 :: Содержание

117 :: 118 :: 119 :: Содержание