Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
витамины.docx
Скачиваний:
20
Добавлен:
27.01.2020
Размер:
858.93 Кб
Скачать

210.Биологическое значение поддержания кос. Что такое буферные системы, их классификация.

Кислотно-основное состояние (КОС) - относительное постоянство реакции внутренней среды организма, количественно характеризующееся концентрацией Н+.

Концентрацию Нвыражают с помощью величины рН. Концентрация Н+, и соответственно величина рН, зависят от соотношения в организме кислот и оснований.

Кислоты Бренстеда -молекулы или ионы, способные отдавать Н+.

Основания Бренстеда -соединения, способные принимать Н+.

Самой распространенной кислотой организма является угольная кислота, в сутки ее образуется около 20 моль. Также в организме образуются другие неорганические (соляная, серная, фосфорная) и органические (амино-, кето-, окси-, нуклеиновые, жирные) кислоты в количестве 80 ммоль/сут.

самым сильным из них является аммиак. Основными свойствами также обладают аминокислоты аргинин и лизин, биогенные амины, например, катехоламины, гистамин, серотонин и т.д.

Биологическое значение регуляции рН, последствия нарушений

Н- положительно заряженные частицы, они присоединяются к отрицательно заряженным группам молекул и анионов, в результате чего те меняют свой состав и свойства. Таким образом, количество Нв жидкости определяет строение и свойства всех основных групп органических соединений – белков, нуклеиновых кислот, углеводов и липидов (амфифильных). Самое важное влияние концентрация Н+ оказывает на активность ферментов. У каждого фермента существует свой оптимум рН, в котором фермент имеет максимальную активность. Например, ферменты гликолиза, ЦТК, ПФШ активны в нейтральной среде, а лизосомальные ферменты, ферменты желудка активны в кислой среде (рН=2). В результате, изменения величины рН вызывает изменение активности отдельных ферментов и приводит к нарушению метаболизма в целом

Основные принципы регуляции КОС

В основе регуляции КОС лежат 3 основных принципа:

1. постоянство рН. Механизмы регуляции КОС поддерживают постоянство рН.

2. изоосмолярность. При регуляции КОС, концентрация частиц в межклеточной и внеклеточной жидкости не изменяется.

3. электронейтральность. При регуляции КОС, количество положительных и отрицательных частиц в межклеточной и внеклеточной жидкости не изменяется.

 

МЕХАНИЗМЫ РЕГУЛЯЦИИ КОС

  1. Физико-химический механизм, это буферные системы крови и тканей;

  2. Физиологический механизм, это органы: легкие, почки, костная ткань, печень, кожа, ЖКТ.

  3. Метаболический (на клеточном уровне).

 

 

Нарушения КОС - классификация по механизмам? Биохимические пути компенсации.

НАРУШЕНИЯ КОС

Компенсация КОС - приспособительная реакция со стороны органа, не виновного в нарушение КОС.

Коррекция КОС – приспособительная реакция со стороны органа, вызвавшего нарушение КОС.

 

Выделяют два основных вида нарушений КОС – ацидоз и алкалоз.

Ацидоз – абсолютный или относительный избыток кислот или дефицит оснований.

Алкалоз – абсолютный или относительный избыток оснований или дефицит кислот.

Ацидоз или алкалоз не всегда сопровождаются заметным изменением концентрации Н+, так как постоянство рН поддерживают буферные системы. Такие ацидозы и алкалозы называются компенсированными (у них рН в норме). АН ↔ А- + Н+, Н+ + B- ↔ BH

Если при ацидозах или алкалозах буферная емкость израсходована, величина рН изменяется и наблюдается: ацидемия – снижение величины рН ниже нормы, или алкалемия - повышение величины рН выше нормы. Такие ацидозы и алкалозы называются декомпенсированными.

Буферные системы – это соединения, противодействующие резким изменениям концентрации ионов Н+. Любая буферная система - это кислотно-основная пара: слабое основание (анион, А) и слабая кислота (Н-Анион, H-А). Они минимизируют сдвиги количества ионов Н+ за счет их связывания с анионом и включения в плохо диссоциирующее соединение – в слабую кислоту. Поэтому общее количество ионов Н+ изменяется не так заметно, как это могло бы быть.

Существует три буферные системы жидкостей организма – бикарбонатнаяфосфатнаябелковаягемоглобиновая.Они вступают в действие моментально и через несколько минут их эффект достигает максимума возможного.

Фосфатная буферная система

Фосфатная буферная система составляет около 2% от всей буферной емкости крови и до 50% буферной емкости мочи. Она образована гидрофосфатом (HPO42–) и дигидрофосфатом (H2PO4). Дигидрофосфат слабо диссоциирует и ведет себя как слабая кислота, гидрофосфат обладает щелочными свойствами. В норме отношение HРO42– к H2РO4 равно 4 : 1.

При взаимодействии кислот (ионов Н+) с двузамещенным фосфатом (HPO42‑) образуется дигидрофосфат (H2PO4):

Удаление ионов H фосфатным буфером

В результате концентрация ионов Нпонижается.

При поступлении в кровь оснований (избыток ОН‑групп) они нейтрализуются поступающими в плазму от H2PO4ионами Н+:

Удаление щелочных эквивалентов фосфатным буфером

Роль фосфатного буфера особенно высока во внутриклеточном пространстве и в просвете почечных канальцев. Кислотно-основная реакция мочи зависит только от содержания дигидрофосфата, т.к. бикарбонат натрия в почечных канальцах реабсорбируется.

Бикарбонатная буферная система

Эта система самая мощная, на ее долю приходится 65% всей буферной системы. Она состоит из бикарбонат-иона (НСО3) и угольной кислоты (Н2СО3). В норме отношение HCO3 к H2CO3равно 20 : 1.

При поступлении в кровь ионов H+ (т.е. кислоты) ионы бикарбоната натрия взаимодействуют с ней и образуется угольная кислота:

При работе бикарбонатной системы концентрация водородных ионов понижается, т.к. угольная кислота является очень слабой кислотой и плохо диссоциирует. При этом в крови не происходит параллельного значимого увеличения концентрации НСО3.

Если в кровь поступают вещества с щелочными свойствами, то они реагируют с угольной кислотой и образуют ионы бикарбоната:

Работа бикарбонатного буфера неразрывно связана с дыхательной системой (с вентиляцией легких). В легочных артериолах при снижении плазменной концентрации СО2  и благодаря присутствию в эритроцитах фермента карбоангидразы угольная кислота быстро расщепляется с образованием CO2, удаляемого с выдыхаемым воздухом:

Н2СО3→ Н2О + СО2

Кроме эритроцитов, значительная активность карбоангидразы отмечена в эпителии почечных канальцев, клетках слизистой оболочки желудка, коре надпочечников и клетках печени, в незначительных количествах – в центральной нервной системе, поджелудочной железе и других органах.

Белковая буферная система

Белки плазмы, в первую очередь альбумин, играют роль буфера благодаря своим амфотерным свойствам. Их вклад в буферизацию плазмы крови около 5%.

В кислой среде подавляется диссоциация СООН‑групп аминокислотных радикалов (в аспарагиновой и глутаминовой кислотах), а группы NH2 (в аргинине и лизине) связывают избыток Н+. При этом белок заряжается положительно.

В щелочной среде усиливается диссоциация COOH‑групп, поступающие в плазму ионы Н+связывают избыток ОН‑ионов и pH сохраняется. Белки в данном случае выступают как кислоты и заряжаются отрицательно.

Изменение заряда буферных групп белка при различных рН

Гемоглобиновая буферная система

Высокой мощностью в крови обладает гемоглобиновый буфер, на него приходится до 28% всей буферной емкости крови. В качестве кислой части буфера выступает оксигенированный гемоглобин H‑HbO2. Он имеет выраженные кислотные свойства и в 80 раз легче отдает ионы водорода, чем восстановленный Н‑Нb, выступающий как основание. Гемоглобиновый буфер можно рассматривать как часть белкового, но его особенностью является работа в теснейшем контакте с бикарбонатной системой.

Изменение кислотности гемоглобина происходит в тканях и в легких, и вызывается связыванием соответственно Hили О2. Непосредственный механизм действия буфера заключается в присоединении или отдаче иона H+  остатком гистидина в глобиновой части молекулы (эффект Бора).

В тканях более кислый pH в норме является результатом накопления минеральных (угольной, серной,соляной) и органических кислот (молочной). При компенсации pH данным буфером ионы H+ присоединяются к пришедшему оксигемоглобину (HbО2) и превращают его в H‑HbО2. Это моментально вызывает отдачу оксигемоглобином кислорода и он превращается в восстановленный H‑Hb.

НbO2+ Н+ → [H-HbO2] → Н-Hb + O2

В результате снижается количество кислот, в первую очередь Н2СО3, продуцируются ионы НСО3и тканевое пространство подщелачивается.

В легких после удаления СО2 (угольной кислоты) происходит защелачивание крови. При этом присоединение О2 к дезоксигемоглобину H-Hb образует кислоту более сильную, чем угольная. Она отдает свои ионы Н+ в среду, предотвращая повышение рН:

Н-Hb + O2 → [H-HbO2] → НbO2 + Н+

Работу гемоглобинового буфера рассматривают неотрывно от бикарбонатного буфера:

Эффективность гемоглобинового буфера напрямую зависит от активности дыхательной системы (Газобмен в легких и тканях)

Соседние файлы в предмете Биохимия