Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2коллоквиум с вит.docx
Скачиваний:
32
Добавлен:
12.04.2022
Размер:
2.13 Mб
Скачать

Билет №17

1. Строения митохондрий

Каждая митохондрия отделена от цитоплазмы двумя мембранами. Наружная мембрана гладкая. Строение внутренней мембраны более сложное. Она образует многочисленные складки – кристы, которые увеличивают функциональную поверхность. Между двумя мембранами находится пространство в 10-20 нм, заполненное ферментами. Внутри органеллы располагается матрикс – гелеобразное вещество.

Дыхательный ансамбль

В дыхательных ансамблях осуществляются утилизация кислорода, окислительное и выделение углекислого газа, т. е. собственно процесс дыхания. На начальный участок ансамбля поступает окисляемый субстрат - восстановленная трикарбоновая кислота, у которой переносчики отнимают водород. С этой стороны ансамбля начинается движение протонов и электронов. С противоположного конца дыхательного ансамбля «специализированные грузчики» поставляют кислород, где он приобретает электроны, становясь отрицательно заряженным. Положительно заряженные атомы водорода соединяются с отрицательно заряженным атомом кислорода, образуя воду. При этом в общей сложности освобождается 218 кДж/моль энергии, 120 из них идет на синтез АТФ. Последний оказывается возможным благодаря специализированной структуре дыхательных ансамблей, состоящих из пяти комплексов ферментов. Первые три участвуют в переносе протонов на внутренней стороне мембраны, третий и четвертый комплексы обеспечивают транспорт электронов вдоль наружной ее стороны, а с помощью пятого комплекса происходит синтез АТФ.

2.

ЦТК является процессом окисления АцетилКоА - универсального продукта катаболизма углеводов, жиров и белков. ЦТК протекает в митохондриях с участием 8 ферментов, которые локализованы в матриксе в свободном состоянии, или на внутренней поверхности внутренней мембраны. В ЦТК участвуют 5 витаминов В1, В2, РР, пантотеновая кислота и липоевая кислота в виде коферментов тиаминпирофосфата, ФАД, НАД+, КоА и липоата.

1) Цитратсинтаза локализуется в матриксе митохондрий, ее активируют ЩУК, НАД+; ингибируют АТФ, НАДН2, Сукцинил-КоА, цитрат.

В реакции образования цитрата углеродный атом метильной группы ацетил-КоА связывается с карбонильной группой оксалоацетата; одновременно расщепляется тио-эфирная связь и освобождается коэнзим А.

2) Аконитаза локализуется в матриксе митохондрий.

Вторая реакция цитратного цикла - обратимое превращение цитрата в изоцитрат. Фермент, катализирующий эту реакцию, назван аконитазой по промежуточному продукту, цис-аконитовой кислоте, которая предположительно образуется в реакции. Однако это соединение не обнаруживается в свободном виде, так как не отделяется от активного центра фермента до завершения реакции.

3) Окислительно-восстановительная реакция, самая медленная в ЦТК. Изоцитратдегидрогеназа локализуется в матриксе митохондрий, ее активируют АМФ, Са2+, АДФ, НАД+; ингибируют АТФ, НАДН2.

​Существуют 2 формы изоцитратдегидрогеназы: одна содержит в качестве кофермента NAD+, вторая - NADP+. NAD-зависимый фермент локализован в митохондриях и участвует в ЦТК; NADP-зависимый фермент, присутствующий и в митохондриях, и в цитоплазме, играет иную метаболическую роль. В результате действия этого фермента на изоцитрат образуется α-кетоглутарат.

4) Окислительно-восстановительная реакция.

α-кетоглутаратдегидрогеназный комплекс состоит из 3 ферментов и содержит 5 коферментов: тиаминдифосфат, кофермент А, липоевая кислота, НАД+, ФАД.

α-КГ ДГ активируется Са2+, ингибируется сукцинил-КоА, АТФ, НАДН2.

Реакцию катализирует α-кетоглутаратдегидрогеназный комплекс, который по структуре и функциям сходен с пируватдегидрогеназным комплексом (ПДК). Подобно ПДК, он состоит из 3 ферментов: α-кетоглутаратдекарбоксилазы, дигидролипоилтранссукцинилазы и дигидролипоилдегидрогеназы. Кроме того, в этот ферментный комплекс входят 5 коферментов: тиаминдифосфат, кофермент А, липоевая кислота, NAD+ и FAD. Существенное отличие этой ферментной системы от ПДК - то, что она не имеет сложного механизма регуляции, какой характерен для ПДК. В частности, в этом комплексе отсутствуют регуляторные субъединицы. Равновесие реакции окислительного декарбоксилирования α-кетоглутарата сильно сдвинуто в сторону образования сукцинил-КоА, и её можно считать однонаправленной.

5) Превращение сукцинил-КоА в сукцинат

Сукцинил-КоА - высокоэнергетическое соединение. В митохондриях разрыв тиоэфирной связи сукцинил-КоА сопряжён с реакцией фосфорилирования гуанозиндифосфата (ГДФ) до гуанозин-трифосфата (ГТФ).

6) Окислительно-восстановительная реакция. Дегидрирование сукцината

Образовавшийся на предыдущем этапе сукцинат превращается в фумарат под действием сукцинатдегидрогеназы. Этот фермент - флавопротеин, молекула которого содержит прочно связанный кофермент FAD.

7) Образование малата из фумарата

Образование малата происходит при участии фермента фумаратгидратазы. Этот фермент более известен как фумараза.

8) Окислительно-восстановительная реакция. Дегидрирование малата В заключительной стадии цитратного цикла малат дегидрируется с образованием оксалоацетата. Реакцию катализирует NAD-зависимая малатдегидрогеназа, содержащаяся в матриксе митохондрий. Образовавшиеся молекулы ЩУК реагируют с новой молекулой Ацетил-КоА и цикл повторяется вновь.

Регуляция ЦТК. Осуществляется с участием 4 регуляторных ферментов: цитратсинтазы, изоцитрат ДГ, α-КГ ДГ и СДГ. ЦТК ингибируется в основном НАДН2 и АТФ, которые являются продуктами ЦТК и цепи окислительного фосфорилирования. Активируют ЦТК в основном НАД+ и АДФ.

3.

4.

Витамин РР (В3) - никотиновая кислота, противопеллагрический витамин. Содержится в злаках, дрожжах. Суточная потребность в нём составляет до 15-25 мг. Биологическая роль: входит в состав коферментов НАД и НАДФ, участвует в процессах биологического окисления. Авитаминоз проявляется заболеванием пеллагра (шершавая кожа). К её симптомам относятся дерматит, слабоумие (деменция), расстройства функций кишечника (диарея) - болезнь «трёх Д». дерматит ,диарея, деменция (поражение центральной нервной системы)

Биохимические функции Перенос гидрид-ионов Н– (атом водорода и электрон) в окислительно-восстановительных реакциях. Реакция с участием НАД и НАДФ

Механизм участия НАД и НАДФ в биохимической реакции

Благодаря переносу гидрид-иона витамин обеспечивает следующие задачи:

  • Метаболизм белков, жиров и углеводов. Так как НАД и НАДФ служат коферментами большинства дегидрогеназ, то они участвуют в реакциях: при синтезе и окислении жирных кислот, при синтезе холестерола, обмена глутаминовой кислоты и других аминокислот; обмена углеводов: пентозофосфатный путь, гликолиз, окислительного декарбоксилирования пировиноградной кислоты, цикла трикарбоновых кислот.

  • НАДН выполняет регулирующую функцию, поскольку является ингибитором некоторых реакций окисления, например, в цикле трикарбоновых кислот.

  • Защита наследственной информации – НАД является субстратом поли-АДФ-рибозилирования в процессе сшивки хромосомных разрывов и репарации ДНК, что замедляет некробиоз и апоптоз клеток.

  • Защита от свободных радикалов – НАДФН является необходимым компонентом антиоксидантной системы клетки.

  • НАДФН участвует в реакциях ресинтеза тетрагидрофолиевой кислоты из дигидрофолиевой, например после синтеза тимидилмонофосфата.

4.Главное терапевтическое применение витамин PP (в той или другой форме) находит в профилактике и лечении пеллагры (авитаминоза РР).Помимо этого витамин используется при заболеваниях печени (циррозы, острые и хронические гепатиты); при спазмах сосудов конечностей, головного мозга, почек, атеросклерозе; при сложно заживающих язвах и ранах; невритах лицевого нерва; инфекционных заболеваниях; гастритах с пониженной кислотностью, энтероколитах, колитах.