Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2коллоквиум с вит.docx
Скачиваний:
32
Добавлен:
12.04.2022
Размер:
2.13 Mб
Скачать

2) Характеристика макроэргических соединений: пример, роль.

Макроэргические соединения - соединения, содержащие макроэргическую связь, при гидролизе которой освобождается энергия больше чем 30 кДж/моль.

К клеточным макроэргическим соединениям относят фосфоенолпируват, 1,3-дифосфоглицерат, которые образуются в гликолизе (в процессе распада глюкозы до пирувата). К ним относят также сукцинил-КоА (образуется в цикле трикарбоновых кислот, переносит фосфатную группу на ГДФ), карбамоилфосфат (образу­ется в первой реакции цикла мочевины) и креатинфосфат. Эти молекулы облада­ют большим потенциалом переноса фосфатной группы на АДФ с образованием АТФ, потому что энергия, выделяемая при распаде этих макроэргических моле­кул более высокая, чем требуется для синтеза АТФ из АДФ. По отношению к АДФ, перечисленные макроэргические молекулы доноры энергии. В свою оче­редь АТФ - источник энергии для важных метаболических путей, в которые вхо­дят глюкоза, фруктоза и многие другие молекулы. Получая фосфатную группу от АТФ, эти молекулы увеличивают уровень своей свободной энергии (AG), что обеспечивает течение ряда ферментативных реакций и клеточных процессов.

Таким образом, АТФ среди клеточных фосфорилированных соединений (по уров­ню свободной энергии) занимает некоторое промежуточное положение. Это оп­ределяет биологическое значение АТФ как универсального донора энергии в ог­ромном числе реакций. Вместе с тем, АДФ универсальный акцептор энергии (и фосфатной группы) от клеточных макроэргов, которые обладают более высоким уровнем свободной энергии. Цикл АТФ-АДФ основной механизм обмена энергии в клетке. Расчеты показывают, что в организме в сутки образуется 40-45 кг АТФ. Некоторые анаболические реакции осуществляются с участием других нуклео-зидтрифосфатов. К ним относятся гуанозинтрифосфат (ГТФ) - участвует в рибо-сомальном синтезе белка, уридинтрифосфат (УТФ) - участвует в синтезе  гликогена , цитидинтрифосфат (ЦТФ) - участвует в синтезе мембранных липидов.

3) Транспорт атф и адф через мембраны митохондрий.

В большинстве эукариотических клеток синтез АТФ происходит внутри митохондрии, а основные потребители АТФ расположены вне её. С другой стороны, в матриксе митохондрий должна поддерживаться достаточная концентрация АДФ. Эти заряженные молекулы не могут самостоятельно пройти через липидный слой мембран. Внутренняя мембрана непроницаема для заряженных и гидрофильных веществ, но в ней содержится определённое количество транспортёров, избирательно переносящих подобные молекулы из цитозоля в матрикс и из матрикса в цитозоль.

В мембране есть белок АТФ/АДФ-антипортер, осуществляющий перенос этих метаболитов через мембрану.

Потоки различных веществ (АТФ, АДФ, Н3РО4, Са2+) проходят через специфические транспортёры, при этом затрачивается энергия электрохимического потенциала мембраны.

Молекула АДФ поступает в митохондриальный матрикс только при условии выхода молекулы АТФ из матрикса.

Движущая сила такого обмена - мембранный потенциал переноса электронов по ЦПЭ. Расчёты показывают, что на транспорт АТФ и АДФ расходуется около четверти свободной энергии протонного потенциала. Другие транспортёры тоже могут использовать энергию электрохимического градиента. Так переносится внутрь митохондрии неорганический фосфат, необходимый для синтеза АТФ. Непосредственным источником свободной энергии для транспорта Са2+ в матрикс также служит протонный потенциал, а не энергия АТФ.