Добавил:
Студент уже 3 курса, подготавливаюсь к зимней сессии. Экзамены у Банника и Молотка Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на ТММ.docx
Скачиваний:
42
Добавлен:
08.01.2020
Размер:
428.14 Кб
Скачать
  1. Аналитический метод кинематического исследования механизмов.

При этом методе звенья механизма, его характерные размеры и перемещения звеньев представляются в виде векторов. В результате формируются векторные многоугольники, на основании которых составляются векторные уравнения.

Рассматривая эти векторные уравнения в проекциях на оси произвольно выбранной системы координат, получают системы алгебраических уравнений, решая которые выводят уравнения для определения перемещений (линейных или угловых) исследуемых звеньев.

В качестве параметра выступает обобщенная координатаначального звена (обычно угол поворота входного кривошипа).

Задавая различные значения обобщенной координаты, по полученным уравнениям определяют положения исследуемых звеньев в различных положениях механизма. Двойным дифференцированием уравнений перемещений получают уравнения для определения скоростей (линейных или угловых) и ускорений (линейных или угловых) исследуемых звеньев.

Однако, как показывает практика, уравнения скоростей и ускорений даже для простых механизмов получаются весьма громоздкими, с большой вероятностью получения ошибок при многоступенчатом дифференцировании.

Кроме того такой подход требует отдельного программирования для каждого механизма при использовании ЭВМ. Поэтому (как было показано выше) удобно использовать аналитический метод в комбинации с графическим методом в качестве алгоритма машинного решения задачи. Такой подход делает решение задачи весьма рациональным.

Особенностью групп Ассура II класса 1-го и 2-го видов является то, что с геометрической точки зрения они имеют два решения. Поэтому применение общего принципа составления аналитических уравнений, изложенного выше, приводит к решению сложных квадратных уравнений, имеющих два корня.

Возникает новая задача по выявлению того корня, который соответствует заданному механизму. Для упрощения решения задачи надо воспользоваться следующими рекомендациями:

  • в группе 1-го вида при составлении векторного многоугольника необходимо «двигаться» от одного крайнего шарнира к другому, а не по звеньям группы;

  • в группе 2-го вида при составлении суммы проекций необходимо провести вспомогательную ось перпендикулярно направляющей, по которой движется ползун, и рассмотреть построенный векторный многоугольник в проекции на эту ось.

Конкретно аналитическое определение углового перемещения выходного звена 5, представленного на рисунке 11 механизма (с учетом изложенных выше рекомендаций), будет иметь следующий вид:

По этим уравнениям с помощью ЭВМ определяется угловое перемещение выходного звена φ5 в рад, угловая скорость ω5 в рад/с, угловое ускорение ε5 в рад/с2 для “n” положений механизма.

  1. Минимальное число зубчатого колеса.

Если х=0, число зубьев нулевого колеса, которые не будут подрезаны режущим инструментом равно:

Для стандартного зубчатого колеса при=1, Zmin=17.

Для уменьшения габаритов зубчатых передач колеса следует проектировать с малым числом зубьев. Поэтому при z<17, чтобы не произошло подрезания колеса должны быть изготовлены со смещением инструмента. Минимальное смещение, при котором не получается подрезания зубьев равно:

При  и zmin =17 получим

Эта формула позволяет определять требуемую величину коэффициента смещения рабочего контура для нарезания желательного числа зубьев zбез их подреза.