Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Chast1giper.doc
Скачиваний:
17
Добавлен:
09.05.2020
Размер:
2.61 Mб
Скачать

5. Механіка рідин і газів

5.1 Сили в’язкості. Рух тіл в рідинах і в газах. Формула Стокса

Сила в’язкості, або сила внутрішнього тертя, виникає в рідинах і в газах при відносному русі шарів і направлена паралельно напрямку руху цих шарів (рис.5.1). В рідинах поява цієї сили зумовлена наявністю міжмолекулярних сил взаємодії. Природу виникнення сил в’язкості в газах встановимо пізніше.

Сила в’язкості гальмує шар, що рухається з більшою швидкістю, і прискорює повільніший шар. Величина цієї сили тим більша, чим більша відносна швидкість шарів і чим менша відстань між ними. Вона знаходиться за формулою Ньютона

. (5.1)

Тут: η [Па∙с] – коефіцієнт в’язкості, для різних речовин різний, але при заданій температурі величина стала; ∆S – площа шарів; - градієнт швидкості направленого руху шарів, тобто „швидкість” її зміни з координатою oz, яка перпендикулярна до площини шарів.

При рухові тіла в рідині або в газі приповерхневий молекулярний шар рідини чи газу рухається разом з тілом і утягує в направлений рух більш віддалені від поверхні шари. Так виникає градієнт швидкості і сила внутрішнього тертя, яка гальмує рух тіла. Ясно що вона залежить від форми тіла. Для кулі цю силу вперше розрахував англійський фізик Д.П.Стокс (1818-1903)

, (5.2)

де: R – радіус кулі, Vo – швидкість кулі.

Розглянемо визначення в’язкості рідини методом Стокса, оснований на формулі (5.2).

В посудину з досліджуваною рідиною кидається кулька радіусом R. Під дією сили тяжіння і виштовхуючої сили Архімеда вона рухається з прискоренням. Ясно, що густина тіла ρт повинна бути більшою, ніж густина рідини ρр. По мірі зростання швидкості зростає сила в’язкості , внаслідок чого величина прискорення зменшується, і в кінці кінців рух кульки стає рівномірним, коли рівнодіюча цих трьох сил стане дорівнювати нулю, тобто , або в скалярній формі

. (5.3).

Підставимо в (5.3) силу Стокса (5.2), масу і силу Архімеда:

. Після спрощень, одержуємо

. (5.4)

Таким чином, знаючи густини ρт, ρр, прискорення вільного падіння g, вимірюючи радіус R і швидкість рівномірного руху Vo, можна розрахувати коефіцієнт в’язкості.

5.2 Елементи гідроаеродинаміки. Рівняння д. Бернуллі

Будемо вивчати рух рідин і газів. Введемо кілька понять.

Лінії, дотичні до яких у кожній точці співпадають з вектором швидкості рис.(5.3), називаються лініями току. Поверхня, утворена лініями току, що проходять через будь-яку замкнуту лінію, називається трубкою току.

Стаціонарним називається такий потік рідини або газу, при якому лінії току не змінюються з часом.

Розглянемо рух рідини, або газу по трубці току (рис.5.4) в таких припущеннях: 1) густина вздовж трубки току однакова; 2) будемо нехтувати нагріванням рідини, або газу за рахунок сил внутрішнього тертя, тобто вважатимемо систему консервативною; 3) рух стаціонарний.

Введемо позначення: S1, S2 – площі перерізу трубки на вході і виході відповідно; Р1, Р2 – тиск на об’єм рідини в трубці току з боку

рідини, яка знаходиться за межами трубки току; V1, V2 – середні по перерізу швидкості течії; h1, h2 – висоти положення середніх ліній трубки від нульового рівня потенціальної енергії Еп.

Знайдемо масу рідини ∆m1, яка втікає в трубку току за час ∆t, і масу ∆m2, яка витікає з неї за цей же час. На рис.5.4 це маси заштрихованих об’ємів, які мають форму циліндрів. Тому

В стаціонарному режимі течії ці маси однакові. Таким чином маємо умову нерозривності стаціонарної течії:

(5.5)

швидкість течії більша в місці з меншою площею поперечного перерізу труби.

Застосуємо до рідини, яка знаходиться в трубці току, закон збереження механічної енергії. Система консервативна (див. припущення 2) і незамкнута. Сили тиску Р1 і Р2 являються зовнішніми силами для вибраної системи. Робота цих сил за час ∆t іде на зміну кінетичної і потенціальної енергії рідини масою ∆m

.

Поділивши це рівняння на об’єм рідини, яка втікає і витікає з труби за час ∆t, тобто на вираз , і врахувавши, що відношення маси до об’єму дає густину, одержуємо рівняння Д. Бернуллі

. (5.6)

Сума статичного тиску Р, динамічного і гідравлічного напорів для будь-якого перерізу труби є величиною сталою.

Така закономірність течії лежить в основі дії пульверизатора, карбюратора, водоструменевого насосу, витратомірів і т.д.

Соседние файлы в предмете Физика