Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

01 POWER ISLAND / 02 H2+NH3 / Royal Swiss 2024 Techno-Economic Analysis of Wind Power-to-Hydrogen

.pdf
Скачиваний:
0
Добавлен:
19.04.2024
Размер:
2.98 Mб
Скачать

[37]G. Franchi, et al. (2020). “Hydrogen Production via Steam Reforming: A Critical Analysis of MR and RMM Technologies”. Membranes, vol. 10, no. 1, p. 10. [Online].

Available: https://doi.org/10.3390/membranes10010010.

[38]D. Lj Stojić, et al. (2008). “A Comparison of Alkaline and Proton Exchange Membrane

Electrolyzers”. Russian Journal of Physical Chemistry A, vol. 82, no. 11. [Online]. Available: https://doi.org/10.1134/s0036024408110289.

[39]S. A. Grigoriev, et al. (2022). “4.18 - Alkaline Electrolysers”. Comprehensive Renewable Energy, vol. 4. [Online]. Available: https://doi.org/10.1016/B978-0-12-819727-1.00024-8.

[40]J. Dohyung, et al. (2022). “Techno-Economic Analysis and Monte Carlo Simulation of

Green Hydrogen Production Technology through Various Water Electrolysis Technologies”.

Energy Conversion and Management, vol. 258. [Online]. Available: https://doi.org/10.1016/j.enconman.2022.115499.

[41]A. Nechache, S. Hody. (2021). “Alternative and Innovative Solid Oxide Electrolysis Cell Materials: A Short Review”. Renewable and Sustainable Energy Reviews, vol. 149. [Online]. Available: https://doi.org/10.1016/j.rser.2021.111322.

[42]A. Christensen. (2020). Assessment of Hydrogen Production Costs from Electrolysis: United States and Europe. International Council on Clean Transportation.

[43]G. Yujing, et al. (2019). “Comparison between Hydrogen Production by Alkaline Water Electrolysis and Hydrogen Production by PEM Electrolysis”. IOP Conference Series: Earth and Environmental Science, vol. 371, no. 4. [Online]. Available: https://doi.org/10.1088/17551315/371/4/042022.

[44]A. B. T. Nelabhotla, D. Pant, C. Dinamarca. (2021). “Chapter 8 - Power-to-gas for methanation”. Emerging Technologies and Biological Systems for Biogas Upgrading.

[45]N. Gallandat, et al. (2017). “An Analytical Model for the Electrolyser Performance Derived from Materials Parameters.” Journal of Power and Energy Engineering, vol. 05, no. 10. [Online]. Available: https://doi.org/10.4236/jpee.2017.510003.

[46]J. Thomas. (2022). “Chapter 2 - Hydrogen Technologies”.

[47]J. André, et al. (2014). “Time Development of New Hydrogen Transmission Pipeline Networks for France”. Vol. 39, no. 20. [Online].

Available: https://doi.org/10.1016/j.ijhydene.2014.04.190.

[48]Department of Energy. “Physical Hydrogen Storage.” Hydrogen and Fuel Cell Technologies Office. [Online]. Available: www.energy.gov/eere/fuelcells/physical-hydrogen- storage.

[49]H. W. Langmi, et al. (2022). “Chapter 13 - Hydrogen Storage”.

[Online]. Available: https://doi.org/10.1016/B978-0-12-819424-9.00006-9

[50]M. Hosseini, et al. (2012). “Thermodynamic Analysis of Filling Compressed Gaseous Hydrogen Storage Tanks”. International Journal of Hydrogen Energy, vol. 37, no. 6. [Online]. Available: https://doi.org/10.1016/j.ijhydene.2011.12.047.

[51]European Train the Trainer Programme for Responders. “Lecture 3 Hydrogen Storage LEVEL II”. [Online]. Available: https://hyresponder.eu/wpcontent/uploads/2021/06/L3_HyResponder_Level2_210616.pdf.

[52]F. I. Gallardo, et al. (2021). “A Techno-Economic Analysis of Solar Hydrogen Production by Electrolysis in the North of Chile and the Case of Exportation from Atacama Desert to

Japan”. International Journal of Hydrogen Energy, vol 46, no 26. [Online]. Available: https://doi.org/10.1016/j.ijhydene.2020.07.050

69

[53]E. Tzimas, C. Filiou, S. D. Peteves, and J. Veyret. “Hydrogen Storage: State-of-the-Art and Future Perspective”.

[54]T. Q. Hua et al., (2011). “Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications”. International Journal of Hydrogen Energy, vol. 36, no. 4. [Online]. Available: https://doi.org/10.1016/j.ijhydene.2010.11.090.

[55]E. Rothuizen and M. Rokni. (2014). “Optimization of the Overall Energy Consumption in Cascade Fueling Stations for Hydrogen Vehicles”. International Journal of Hydrogen Energy, vol. 39, no. 1. [Online]. Available: https://doi.org/10.1016/j.ijhydene.2013.10.066.

[56]M. Minutillo., et al. (2021). “Analyzing the Levelized Cost of Hydrogen in Refueling Stations with On-Site Hydrogen Production via Water Electrolysis in the Italian Scenario”.

International Journal of Hydrogen Energy, vol. 46, no. 26. [Online]. Available: https://doi.org/10.1016/j.ijhydene.2020.11.110.

[57]F. Sartini, S. Grönkvist, and F. Magnus. (2017). “Ifrastructure and Vehicles for Heavy

Long-haul Transports Fuelled by Electricity and Hydrogen - An Overview”. Swedish Knowl. Cent. Renew. Transp. Fuels, Sweden. [Online]. Available: www.f3centre.se.

[58]Bloomberg NEF. (2020). “Hydrogen Economy Outlook”. Bloom. New Energy Financ.,

p. 12. [Online]. Available: https://data.bloomberglp.com/professional/sites/24/BNEF-Hydrogen- Economy-Outlook-Key-Messages-30-Mar-2020.pdf.

[59]W. A. Amos. (1998). “Costs of Storing and Transporting Hydrogen”. [Online]. Available: http://www.osti.gov/bridge/servlets/purl/6574-OBMlES/webviewable/.

[60]C. Yang. (2007). “Determining the lowest-cost hydrogen delivery mode”. International Journal of Hydrogen Energy, vol 32, no 2. [Online]. Available: https://doi.org/10.1016/j.ijhydene.2006.05.009.

[61]J. Jeppsson, P. E. Larsen, and A. Larsson. (2008). “Technical Description Lillgrund Wind Power Plant”. Vattenfall Vindkraft AB.

[62]SMHI. “Ladda Ner Meteorologiska Observationer”. Eggegrund A. [Online].

Available: https://www.smhi.se/data/meteorologi/ladda-ner-meteorologiska- observationer/#param=wind,stations=core.

[63]L. Shafiee. (2014)”. Validation of Models for Analysis of the Flexibility of the Swedish

Power System”.

[64]Pratakarnkraft. (2023).” Lillgrund & Markbygden vs Olkiluoto - Ett räkne-exempel”.

[65]Storgrundet Vindkraftspark. (2009). ”Miljökonsekvensbeskrivning”.

[66]Svea Vind Offshore. (2021).” Schematisk potentiell systemdesign”.

[67]F. J. Pino, L. Valverde, and F. Rosa. (2011). “Influence of Wind Turbine Power Curve and

Electrolyzer Operating Temperature on Hydrogen Production in Wind–Hydrogen Systems”. Journal of Power Sources, vol. 196, no. 9. [Online]. Available: https://doi.org/10.1016/j.jpowsour.2010.10.060.

[68]Cummins. (2021). “Hydrogen: the next generation”. Discover cumin electrolyzer technologies, pp. 10–11.

[69]A. Wickström. (2021). “Styrmedel för vätgasproduktion med sektorkoppling till fjärrvärme”.

[70]R. K. Ahluwalia., et al. (2020). “System Level Analysis of Hydrogen Storage Options”.

[71]Hyfindr. (2023). “Hydrogen tank”. [Online]. Available: https://hyfindr.com/hydrogentank/.

70

[72]PALA Group. (2022). “What is the Average Aboveground Fuel Storage Tank’s Life Expectancy?”. [Online]. Available: https://www.palagroup.com/what-is-the-average- aboveground-fuel-storage-tanks-life-expectancy/.

[73]D. Véronique., et al. (2020). “Energy and Economic Costs of Chemical Storage”. Frontiers in Mechanical Engineering, vol. 6. [Online]. Available: doi: 10.3389/fmech.2020.00021.

[74]Energimyndigheten. (2022). “Elkundens bidrag till förnybar elproduktion”.

[75]Gävle Hamn. (2023). ”Hållbarhet”. [Online]. Available: https://gavlehamn.se/hallbarhet/.

[76]F. Mårtensson. (2021). ” Vindkraftsbolag ska producera vätgas i Gävle hamn”. Tidningen Energi. [Online]. Available: https://www.energi.se/artiklar/2021/oktober-2021/vindkraftsbolag- ska-producera-vatgas-i-gavle-hamn/.

[77]M. Gutiérrez. (2021). “Making better decisions by applying mathematical optimization to cost accounting: An advanced approach to multi-level contribution margin accounting”. Heliyon, vol. 7, no. 2. [Online]. Available: doi: 10.1016/j.heliyon.2021.e06096.

[78]E. Estevez. (2023). “Contribution Margin: Definition, Overview, and How To Calculate”.

The Investopedia Team. [Online]. Available: https://www.investopedia.com/terms/c/contributionmargin.asp.

[79]A. R. Dahiru, A. Voukila, D. M. Huuhtanen. (2022)”. Recent development in Power-to-X: Part I - A review on techno-economic analysis”. Journal of Energy Storage, vol. 56. [Online]. Available: https://doi.org/10.1016/j.est.2022.105861.

[80]L. Wester. (2015). “Tabeller och Diagram för energitekniska beräkningar”. Marklund Solutions.

[81]C. Varela, M. Mostafa, and E. Zondervan. (2021). “Modeling alkaline water electrolysis for power-to-x applications: A scheduling approach”. Int. J. Hydrogen Energy, vol. 46, no. 14. [Online]. Available: doi: 10.1016/j.ijhydene.2020.12.111.

71

APPENDIX A: MATLAB AND PYTHON CODES

MATLAB Code x=[0:25]; %Wind speed limit

y=[ ]; %Power output [MW] obtained at different wind speed z=[ ]; %Eggegrund A wind data

f=fit(x(:),y(:),'linearinterp'); %linear interpolation

k=f(z); %Power output as a function of Eggegrund A wind data Q=[1:8760]; %Annual hours

Python Code import pandas as pd

#Spot Price tak19 = [ ] tak20 = [ ] tak21 = [ ]

#Spot Price year 2019 #Spot Price year 2020 #Spot Price year 2021

#Extract data from Specific Column Excel File cols = ['5 MW',

'10 MW',

'20 MW']

#Read Excel File

df19 = pd.read_excel('spotprisvindhastvatgas_fixad.xlsx',index_col=0, sheet_name='2019') df20 = pd.read_excel('spotprisvindhastvatgas_fixad.xlsx',index_col=0, sheet_name ='2020') df21 = pd.read_excel('spotprisvindhastvatgas_fixad.xlsx',index_col=0, sheet_name = '2021')

#Scale Hydrogen Production to Zero men Exceeding Spot Price at different years df19.loc[df19['spotpris']>=tak19,cols] = 0 #Year 2019

df20.loc[df20['spotpris (euro)']>=tak20,cols] = 0 #Year 2019 df21.loc[df21['spotpris (euro)']>=tak21,cols] = 0 #Year 2019

#Only Produce H2 when Effect Produced Exceeds Electrolyers’ Capacity df19[df19[cols] < [100,200,400]] = 0 #5 MW

df20[df20[cols] < [100,200,400]] = 0 #10 MW df21[df21[cols] < [100,200,400]] = 0 #10 MW

#Daily H2 Production for Different Years df19_dag = df19[cols].resample('d').sum() df20_dag = df20[cols].resample('d').sum() df21_dag = df21[cols].resample('d').sum()

#Plot (Simulate) Annual Hydrogen Production import matplotlib.pyplot as plt df19_dag.plot(subplots=True) df20_dag.plot(subplots=True) df21_dag.plot(subplots=True)

72

APPENDIX B: PROFITABLE HYDROGEN PRODUCTION

5 MW hydrogen Production Facility

Table 40. Profitable hydrogen production, 5 MW, in year 2019, where hydrogen price ranges from 3–7 €/kg.

Spot Price

Hydrogen Price

Annual Spot Hours

Annual Production

Annual Income

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

49.3

[€/MWh]

3 [€/kg]

4203 [h]

420200 [kg]

1.26 [m€]

 

69.2

[€/MWh]

4 [€/kg]

4918 [h]

491700 [kg]

1.97 [m€]

 

89.13

[€/MWh]

5 [€/kg]

4943 [h]

494200 [kg]

2.47 [m€]

 

109.1

[€/MWh]

6 [€/kg]

4947 [h]

494600 [kg]

2.97 [m€]

 

129

[€/MWh]

7 [€/kg]

4947 [h]

494600 [kg]

3.46 [m€]

 

 

 

 

 

 

 

 

 

Table 41. Profitable hydrogen production, 5 MW, in year 2020, where hydrogen price ranges from 3–7 €/kg.

Spot Price

Hydrogen Price

Annual Spot Hours

Annual Production

Annual Income

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50.7 [€/MWh]

3 [€/kg]

5055 [h]

505400 [kg]

1.52 [m€]

 

70.7 [€/MWh]

4 [€/kg]

5101 [h]

510000 [kg]

2.04 [m€]

 

90.6 [€/MWh]

5 [€/kg]

5113 [h]

511200 [kg]

2.56 [m€]

 

10.5 [€/MWh]

6 [€/kg]

5115 [h]

511400 [kg]

3.07 [m€]

 

30.5 [€/MWh]

7 [€/kg]

5115 [h]

511400 [kg]

3.58 [m€]

 

 

 

 

 

 

 

 

Table 42. Profitable hydrogen production, 5 MW, in year 2021, where hydrogen price ranges from 3–7 €/kg.

Spot Price

Hydrogen Price

Annual Spot Hours

Annual Production

Annual Income

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

52.3

[€/MWh]

3 [€/kg]

4213 [h]

421200 [kg]

1.26 [m€]

 

72.2

[€/MWh]

4 [€/kg]

5240 [h]

523900 [kg]

2.10 [m€]

 

92.2

[€/MWh]

5 [€/kg]

5382 [h]

538100 [kg]

2.69 [m€]

 

112.1

[€/MWh]

6 [€/kg]

5453 [h]

545200 [kg]

3.27 [m€]

 

132.1

[€/MWh]

7 [€/kg]

5488 [h]

548700 [kg]

3.84 [m€]

 

 

 

 

 

 

 

 

 

73

10 MW hydrogen Production Facility

Table 43. Profitable hydrogen production, 10 MW, in year 2019, where hydrogen price ranges from 3–7 €/kg.

Spot Price

Hydrogen Price

Annual Spot Hours

Annual Production

Annual Income

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

49.3

[€/MWh]

3 [€/kg]

3451 [h]

690000 [kg]

2.07 [m€]

 

69.2

[€/MWh]

4 [€/kg]

4090 [h]

817800 [kg]

3.27 [m€]

 

89.13

[€/MWh]

5 [€/kg]

4111 [h]

822000 [kg]

4.11 [m€]

 

109.1

[€/MWh]

6 [€/kg]

4114 [h]

822600 [kg]

4.94 [m€]

 

129

[€/MWh]

7 [€/kg]

4114 [h]

822600 [kg]

5.76 [m€]

 

 

 

 

 

 

 

 

 

Table 44. Profitable hydrogen production, 10 MW, in year 2020, where hydrogen price ranges from 3–7 €/kg.

Spot Price

Hydrogen Price

Annual Spot Hours

Annual Production

Annual Income

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50.7

[€/MWh]

3 [€/kg]

4108 [h]

821400 [kg]

2.47 [m€]

 

70.7

[€/MWh]

4 [€/kg]

4145 [h]

828800 [kg]

3.32 [m€]

 

90.6

[€/MWh]

5 [€/kg]

4152 [h]

830200 [kg]

4.15 [m€]

 

110.5

[€/MWh]

6 [€/kg]

4153 [h]

830400 [kg]

4.98 [m€]

 

130.5

[€/MWh]

7 [€/kg]

4153 [h]

830400 [kg]

5.81 [m€]

 

 

 

 

 

 

 

 

 

Table 45. Profitable hydrogen production, 10 MW, in year 2021, where hydrogen price ranges from 3–7 €/kg.

Spot Price

Hydrogen Price

Annual Spot Hours

Annual Production

Annual Income

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

52.3

[€/MWh]

3 [€/kg]

3555 [h]

710800 [kg]

2.13 [m€]

 

72.2

[€/MWh]

4 [€/kg]

4388 [h]

877400 [kg]

3.51 [m€]

 

92.2

[€/MWh]

5 [€/kg]

4502 [h]

900200 [kg]

4.50 [m€]

 

112.1

[€/MWh]

6 [€/kg]

4557 [h]

911200 [kg]

5.47 [m€]

 

132.1

[€/MWh]

7 [€/kg]

4584 [h]

916600 [kg]

6.42 [m€]

 

 

 

 

 

 

 

 

 

74

20 MW hydrogen Production Facility

Table 46. Profitable hydrogen production, 20 MW, in year 2019, where hydrogen price ranges from 3–7 €/kg.

Spot Price

Hydrogen Price

Annual Spot Hours

Annual Production

Annual Income

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

49.3

[€/MWh]

3 [€/kg]

2552 [h]

1020400 [kg]

3.06 [m€]

 

69.2

[€/MWh]

4 [€/kg]

3045 [h]

1217600 [kg]

4.87 [m€]

 

89.13

[€/MWh]

5 [€/kg]

3056 [h]

1222000 [kg]

6.11 [m€]

 

109.1

[€/MWh]

6 [€/kg]

3056 [h]

1222000 [kg]

7.33 [m€]

 

129

[€/MWh]

7 [€/kg]

3056 [h]

1222000 [kg]

8.56 [€m]

 

 

 

 

 

 

 

 

 

Table 47. Profitable hydrogen production, 20 MW, in year 2020, where hydrogen price ranges from 3–7 €/kg.

Spot Price

Hydrogen Price

Annual Spot Hours

Annual Production

Annual Income

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50.7

[€/MWh]

3 [€/kg]

2967 [h]

1186400 [kg]

3.56 [m€]

 

70.7

[€/MWh]

4 [€/kg]

2986 [h]

1194000 [kg]

4.78 [m€]

 

90.6

[€/MWh]

5 [€/kg]

2990 [h]

1195600 [kg]

5.98 [m€]

 

110.5

[€/MWh]

6 [€/kg]

2991 [h]

1196000 [kg]

7.18 [m€]

 

130.5

[€/MWh]

7 [€/kg]

2991 [h]

1196000 [kg]

8.37 [m€]

 

 

 

 

 

 

 

 

 

Table 48. Profitable hydrogen production, 20 MW, in year 2021, where hydrogen price ranges from 3–7 €/kg.

Spot Price

Hydrogen Price

Annual Spot Hours

Annual Production

Annual Income

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

52.3

[€/MWh]

3 [€/kg]

2635 [h]

1053600 [kg]

3.16 [m€]

 

72.2

[€/MWh]

4 [€/kg]

3237 [h]

1294400 [kg]

5.18 [m€]

 

92.2

[€/MWh]

5 [€/kg]

3310 [h]

1323600 [kg]

6.62 [m€]

 

112.1

[€/MWh]

6 [€/kg]

3349 [h]

1339200 [kg]

8.10 [m€]

 

132.1

[€/MWh]

7 [€/kg]

3369 [h]

1347200 [kg]

9.43 [m€]

 

 

 

 

 

 

 

 

 

75

APPENDIX C: PROFIT GENERATED FROM HYDROGEN SALES

5 MW hydrogen Production Facility

Table 49. Profit generated from hydrogen production, 5 MW, in 2019, hydrogen price ranges from 3–7 €/kg.

Hydrogen Price

Annual Production

Annual Income

Annual Investment Cost

Profit

 

 

 

 

 

 

 

 

 

 

3 [€/kg]

420200 [kg]

1.26 [m€]

1.32 [m€]

-0.36 [m€]

4 [€/kg]

491700 [kg]

1.96 [m€]

1.41 [m€]

0.19 [m€]

5 [€/kg]

494200 [kg]

2.47 [m€]

1.41 [m€]

0.69 [m€]

6 [€/kg]

494600 [kg]

2.97 [m€]

1.41 [m€]

1.19 [m€]

7 [€/kg]

494600 [kg]

3.46 [m€]

1.41 [m€]

1.68 [m€]

 

 

 

 

 

Table 50. Profit generated from hydrogen production, 5 MW, in 2020, hydrogen price ranges from 3–7 €/kg.

Hydrogen Price

Annual Production

Annual

Income

Annual Investment Cost

Profit

 

 

 

 

 

 

 

 

 

 

 

 

3 [€/kg]

505400 [kg]

1.52

[m€]

1.80 [m€]

-0.29 [m€]

4 [€/kg]

510000 [kg]

2.04

[m€]

1.81 [m€]

0.23 [m€]

5 [€/kg]

511200 [kg]

2.56

[m€]

1.81 [m€]

0.75 [m€]

6 [€/kg]

511400 [kg]

3.07

[m€]

1.81 [m€]

1.26 [m€]

7 [€/kg]

511400 [kg]

3.58

[m€]

1.81 [m€]

1.77 [m€]

 

 

 

 

 

 

Table 51. Profit generated from hydrogen production, 5 MW, in 2021, hydrogen price ranges from 3–7 €/kg.

Hydrogen Price

Annual Production

Annual Income

Annual Investment Cost

Profit

 

 

 

 

 

 

 

 

 

 

3 [€/kg]

421200 [kg]

1.26 [m€]

1.64 [m€]

-0.37 [m€]

4 [€/kg]

523900 [kg]

2.10 [m€]

1.84 [m€]

0.26 [m€]

5 [€/kg]

538100 [kg]

2.69 [m€]

1.87 [m€]

0.86 [m€]

6 [€/kg]

545200 [kg]

3.27 [m€]

1.88 [m€]

1.39 [m€]

7 [€/kg]

548700 [kg]

3.84 [m€]

1.86 [m€]

1.96 [m€]

 

 

 

 

 

76

10 MW hydrogen Production Facility

Table 52. Profit generated from hydrogen production, 10MW,in 2019, hydrogen price ranges from 3–7 €/kg.

Hydrogen Price

Annual Production

Annual Income

Annual Investment Cost

Profit

 

 

 

 

 

 

 

 

 

 

 

 

 

3 [€/kg]

690000 [kg]

2.07 [m€]

2.98 [m€]

-0.91 [m€]

4 [€/kg]

817800 [kg]

3.27 [m€]

3.27 [m€]

0.04 [m€]

5 [€/kg]

822000 [kg]

4.11 [m€]

3.24 [m€]

0.87 [m€]

6 [€/kg]

822600 [kg]

4.94 [m€]

3.24 [m€]

1.70 [m€]

7 [€/kg]

822600 [kg]

5.76 [m€]

3.24 [m€]

2.52 [m€]

 

 

 

 

 

 

 

Table 53. Profit generated from hydrogen production, 10MW,in 2020, hydrogen price ranges from 3–7 €/kg.

Hydrogen Price

Annual Production

Annual Income

Annual Investment Cost

 

Profit

 

 

 

 

 

 

 

 

 

 

 

3 [€/kg]

821400 [kg]

2.46 [m€]

3.24 [m€]

-0.77 [m€]

4 [€/kg]

828800 [kg]

3.32 [m€]

3.25 [m€]

0.07 [m€]

5 [€/kg]

830200 [kg]

4.15 [m€]

3.25 [m€]

0.90 [m€]

6 [€/kg]

830400 [kg]

4.98 [m€]

3.25 [m€]

1.73 [m€]

7 [€/kg]

830400 [kg]

5.81 [m€]

3.25 [m€]

2.56 [m€]

 

 

 

 

 

 

 

Table 54. Profit generated from hydrogen production, 10MW,in 2021, hydrogen price ranges from 3–7 €/kg.

Hydrogen Price

Annual Production

Annual Income

Annual Investment Cost

Profit

 

 

 

 

 

 

 

 

 

 

3 [€/kg]

710800 [kg]

2.13 [m€]

3.02 [m€]

-0.89 [m€]

4 [€/kg]

877400 [kg]

3.51 [m€]

3.34 [m€]

0.17 [m€]

5 [€/kg]

900200 [kg]

4.50 [m€]

3.39 [m€]

1.11 [m€]

6 [€/kg]

911200 [kg]

5.47 [m€]

3.41 [m€]

2.06 [m€]

7 [€/kg]

916600 [kg]

6.42 [m€]

3.42 [m€]

3.00 [m€]

 

 

 

 

 

77

20 MW hydrogen Production Facility

Table 55. Profit generated from hydrogen production, 20MW,in 2019, hydrogen price ranges from 3–7 €/kg.

Hydrogen Price

Annual Production

Annual Income

Annual Investment Cost

 

Profit

 

 

 

 

 

 

 

 

 

 

 

3 [€/kg]

1020400 [kg]

3.06 [m€]

5.26 [m€]

-2.20 [m€]

4 [€/kg]

1217600 [kg]

4.87 [m€]

5.65 [m€]

-0.77

[m€]

5 [€/kg]

1222000 [kg]

6.11 [m€]

5.65 [m€]

0.46

[m€]

6 [€/kg]

1222000 [kg]

7.33 [m€]

5.65 [m€]

1.68

[m€]

7 [€/kg]

1222000 [kg]

8.55 [m€]

5.65 [m€]

2.90 [m€]

 

 

 

 

 

 

 

 

Table 56. Profit generated from hydrogen production, 20MW,in 2020, hydrogen price ranges from 3–7 €/kg.

Hydrogen Price

Annual Production

Annual Income

Annual Investment Cost

Profit

 

 

 

 

 

 

 

 

 

 

 

 

 

3 [€/kg]

1186400 [kg]

3.56 [m€]

5.58 [m€]

-2.03 [m€]

4 [€/kg]

1194000 [kg]

4.78 [m€]

5.60 [m€]

-0.82 [m€]

5 [€/kg]

1195600 [kg]

5.98 [m€]

5.60 [m€]

0.38 [m€]

6 [€/kg]

1196000 [kg]

7.18 [m€]

5.60 [m€]

1.57 [m€]

7 [€/kg]

1196000 [kg]

8.37 [m€]

5.60 [m€]

2.77 [m€]

 

 

 

 

 

 

 

Table 57. Profit generated from hydrogen production, 20MW,in 2021, hydrogen price ranges from 3–7 €/kg.

Hydrogen Price

Annual Production

Annual Income

Annual Investment Cost

 

Profit

 

 

 

 

 

 

 

 

 

 

 

3 [€/kg]

1053600 [kg]

3.16 [m€]

5.33 [m€]

-2.17 [m€]

4 [€/kg]

1294400 [kg]

5.18 [m€]

5.79 [m€]

-0.62 [m€]

5 [€/kg]

1323600 [kg]

6.62 [m€]

5.85 [m€]

0.78 [m€]

6 [€/kg]

1339200 [kg]

8.04 [m€]

5.88 [m€]

2.15 [m€]

7 [€/kg]

1347200 [kg]

9.43 [m€]

5.90 [m€]

3.53 [m€]

 

 

 

 

 

 

 

78