Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник по ГТ, усов1.doc
Скачиваний:
28
Добавлен:
13.09.2019
Размер:
3.46 Mб
Скачать

Глава 3

МЕТЕОРОЛОГИЧЕСКИЕ УСЛОВИЯ НА ПРОИЗВОДСТВЕ

Микроклимат производственных помещений определяется сочетанием температуры, влажности, подвижности воздуха, температуры окружающих поверхностей и их тепловым излучением.

Параметры микроклимата производственных помещений, отличаясь большой динамичностью, зависят от теплофизических особенностей технологического процесса, климата, сезона года, условий отопления и вентиляции.

Основные параметры микроклимата

Температура воздуха. Температура является одним из ведущих факторов, определяющих метеорологические условия производственной среды. Высокая температура воздуха характерна для производств, где технологические процессы сопровождаются значительными тепловыделениями. Это имеет место в металлургической, машиностроительной, текстильной, пищевой промышленности и др., а также при работе на открытом воздухе в условиях жаркого климата, где температура воздуха может достигать более 30 - 40 °С.

Нагревание воздуха в цехах ряда производств происходит в результате переноса тепла от нагретых поверхностей оборудования потоками воздуха при недостаточном удалении теплоизбытков. В таких цехах с преобладанием конвекционного тепла, поступающего в значительном количестве (до 34 Дж/м2/с) в виде конвекционных потоков от нагретых поверхностей оборудования и материалов, температура может достигать 35-45 °С, превышая наружную на 14 - 25°С. Это могут быть рабочие помещения сахарных заводов, цехи по производству химического волокна, турбинные цехи ТЭЦ, глубокие угольные шахты.

Для ряда производств характерно действие на организм пониженной температуры воздуха. В не отапливаемых рабочих помещениях (элеваторы, склады, некоторые цехи судостроительных заводов) в холодное время года температура воздуха может колебаться от -3 до -25°С (холодильники).

Работы на открытом воздухе в холодное и переходное время года (строительство, лесозаготовки, добыча нефти, газа, геологоразведка) в средних широтах проводятся при температуре от О до -20 °С, а в условиях Заполярья и Арктики от -30 °С и ниже.

Тепловое излучение (инфракрасное излучение), представляет собой невидимое электромагнитное излучение с длиной волны от 0,76 до 540 нм, обладающее волновыми, квантовыми свойствами.

По длине волны инфракрасные лучи делят на коротковолновую (менее 1,4 мкм), средневолновую (1,4 - 3 мкм), длинноволновую (более 3 мкм) область. В производственных условиях гигиеническое значение имеет более узкий диапазон – 0,76 – 70 мкм. Интенсивность теплоизлучения измеряют в Вт/м2 . Инфракрасные лучи, проходя через воздух, его не нагревают, но, поглотившись твердыми телами, лучистая энергия переходит в тепловую вызывая их нагревание.

Источником инфракрасного излучения является любое нагретое тело. Степень инфракрасного излучения обусловлена следующими основными законами, важными в гигиеническом отношении.

Лучеиспускание обусловливается только состоянием излучающего тела и не зависит от окружающей среды (закон Кирхгофа). Лучеиспускательная способность любого тела пропорциональна его лучепоглощательной способности. Тело, поглощающее все падающие на него лучи (абсолютно черное тело), обладает максимальным излучением. На этом законе основано применение отражающей защитной одежды, светофильтров, окраска оборудования, устройство приборов для измерения теплового излучения.

С повышением температуры излучающего тела мощность излучения увеличивается пропорционально 4-й степени его абсолютной температуры (закон Стефана-Больцмана):

 

Е = s*Т4

 

где Е - мощность излучения;

s - постоянная Стефана—Больцмана, равная 5,67032 * 10-8 Вт*м-2-4;

Т - абсолютная температура тела, К (кельвин).

В соответствии с этим законом даже небольшое повышение температуры тела приводит к значительному росту отдачи тепла излучением. Используя этот закон, можно определить величину теплообмена излучением в производственных условиях.

Количество тепловой энергии, передаваемое изучением, определяется законом Степана – Больцмана по формуле:

 

Е = С12*s*(Т14 – Т24)

 

где Е - теплоотдача, вт;

С1 и С2 - константы излучениях поверхностей;

s - постоянная Стефана—Больцмана;

Т1 и Т2 - температура поверхностей (К), между которыми происходит теплообмен излучением.

При расчете теплоотдачи излучением учитывают температуру стен и других поглощающих тепловую радиацию поверхностей (среднерадиационная температура).

Произведение абсолютной температуры излучающего тепла на длину волны излучения с максимальной энергией величина постоянная (закон Вина - закон смещения):

 

lмах *Т = С

 

где С = 2880;

Т - абсолютная температура, К;

l - длина волны, мкм.

Исходя из закона Вина, длина волны максимального излучения нагретого тела обратно пропорциональна его абсолютной температуре:

 

lмах = С/Т

 

По температуре источника можно ориентировочно определить длину волны максимального излучения и оценить биологический эффект его воздействия.

Отмечено, что с повышением, абсолютной температуры нагретого тела изменяется спектральный состав излучения: длина волны максимального излучения смещается в сторону более коротких волн.

При температуре твердых тел, нагретых до 400 – 500 °С, излучение происходит главным образом в области длинных волн. При нагреве до 1600 °С (расплавленная сталь) 22 % энергии приходится на коротковолновый диапазон. При температуре электродуги (2730 °С) коротковолновая часть спектра lмах = 0,96 мкм уже составляет 43%.

Интенсивность теплового излучения на рабочих местах может колебаться от 175 Вт/м2 до 13956 Вт/м2.

Колебания интенсивности, теплового облучения человека на рабочих местах зависит от многих причин: характера технологического процесса, температуры источника излучения, расстояния рабочего места от источника излучения, степени теплоизоляции, наличия индивидуальных и коллективных средств защиты.

В производственных помещениях с большими тепловыделениями (горячие цехи) на долю инфракрасного излучения может приходиться до 2/3 выделяемого тепла и только 1/3 на конвекционное тепло.

К горячим цехам относятся цехи, в которых тепловыделения превышают 23 Дж/м3: основные цехи заводов черной металлургии (доменные, конверторные, мартеновские, электросталеплавильные. прокатные и др,), где интенсивность инфракрасной радиации колеблется в пределах 348 - 13920 вт/м2. В горячих цехах машиностроительной промышленности (литейных, кузнечных, где происходит плавка, заливка металла, нагрев и обработка деталей) интенсивность теплоизлучения составляет 1392 – 3480 Вт/м2. Интенсивным теплоизлучением характеризуются условия труда при работах на открытых площадках в жарком климате при выполнении строительных, сельскохозяйственных работ.

Влажность воздуха. Высокое содержание паров воды 80 – 100 % создается в воздухе производственных помещений, где установлены открытые ёмкости, ванны с водой, горячими растворами, мречные машины.

К таким производствам относятся ряд цехов кожевенного, бумажного производства, шахты, прачечные. В некоторых цехах высокая влажность поддерживается искусственно (прядильные, ткацкие цехи), исходя из технологических требований. В цехах с высокой влажностью понижение температуры воздуха и окружающих поверхностей может приводить к конденсации паров и образованию тумана.

Подвижность воздуха. В производственных условиях подвижность воздуха создается конвекционными потоками воздуха, которые возникают в результате проникновения в помещение холодных масс воздуха, либо за счет разности температур в смежных участках производственных помещений, а также создается искусственно работой вентиляционных систем.

Большие скорости движения воздуха наблюдаются при работах на открытом воздухе. Подвижность воздуха может в значительной степени расширить (при высоких температурах) и сузить (при низких температурах) зону оптимального микроклимата.

Микроклимат и тепловой обмен

Между человеком и окружающей его средой постоянно происходит теплообмен. Несмотря на колебания температуры окружающей среды, температура тела человека поддерживается на относительно постоянном уровне (в подмышечной впадине равна 36,5 - 36,9 °С с колебаниями в течение суток в пределах 0,5 - 0,7 °С). Уровень температуры тела человека в определенной степени зависит от соотношения между интенсивностью образования тепла и величиной теплопотерь, поддерживаясь за счет реакций терморегуляции.

Терморегуляция - взаимосочетание процессов теплообразования и теплоотдачи, регулируемых нервно-эндокринным путем.

Различают регуляцию теплообразования (химическая терморегуляция) и теплообмена (физическая терморегуляция).

Наибольший вклад в энергетический обмен вносит сократительная мышечная активность. Теплопродукция печени составляет 12 - 24% общей теплопродукции организма. Так, если в состоянии покоя теплообразование находится на уровне 111,6 - 125,5 Вт, при интенсивной мышечной работе наблюдается увеличение теплопродукции до 313,6 - 418,4 Вт.

Усиление теплообразования у человека вследствие увеличения интенсивности энергетического обмена отмечается тогда, когда температура окружающей среды становится ниже оптимальной (18 - 20 °С)

При низких температурах специфической реакцией химической терморегуляции является холодовая мышечная дрожь, при которой внешней работы не совершается и вся энергия сокращения переходит в тепло. Источником дополнительного тепла при охлаждении является также терморегуляторный мышечный тонус - особая не видимая глазу сократительная активность мышц.

Эффективность повышения теплопродукции зависит от величины теплоизоляции тела.

Теплоотдача осуществляется следующими путями:

а) излучения тепла телом человека (по отношению к окружающим поверхностям, имеющим более низкую температуру) - радиационная теплоотдача;

б) конвекции - отдачи тепла с поверхности тела человека притекающим к нему менее нагретым слоям воздуха;

в) проведения - отдачи тепла предметам, непосредственно соприкасающимся с поверхностью тела;

г) испарения воды с поверхности кожи и дыхательных путей.

В состоянии покоя при температуре воздуха около 20 °С на долю теплоизлучения приходится от 50 до 65%, испарения воды – 20 - 25%, конвекции - 15% от общей потери тепла организмом.

Если температура окружающего воздуха соответствует температуре кожи, отдача тепла конвекцией прекращается, в случае ее превышения происходит не отдача, а восприятие конвекционного тепла.

Одежда уменьшает теплоотдачу. Теплоизолирующие свойства одежды зависят от толщины используемых материалов, воздухопроницаемости и конструкции.

Отдача тепла излучением в производственных условиях является одним из основных путей теплообмена человека с окружающей средой. Спектр излучения поверхности тела человека в комфортных условиях находится в пределах от 2,5 до 25 мкм с lмах - 9,52 мкм.

Тепло отдается организмом излучением тогда, когда температура стен, пола, потолка, а также поверхностей оборудования и других материалов в окружающей среде ниже температуры поверхности тела.

В тех случаях, когда температура окружающих поверхностей выше температуры тела (32 - 33 °С), происходит не потеря, а восприятие тепла путем радиации.

При повышении температуры воздуха и окружающих поверхностей, когда отдача тепла конвекцией и радиацией уменьшена, основным путем отдачи тепла организмом является испарение.

При нормальной температуре воздуха организм теряет в сутки до 1 л воды путем неощутимого и активного потоотделения. При повышении температуры выделение пота может быть 5 - 6 л за смену. При тяжелой мышечной работе в горячем цехе величина потоотделения может достигать 12 л.

Величина потоотделения у человека зависит от температуры воздуха, скорости движения его, влажности (парциального давления паров), теплозащитных свойств одежды, уровня мышечной активности.

Уровень потоотделения повышается пропорционально тяжести выполняемой работы, способствуя теплоотдаче конвекцией и потоиспарением, движение воздуха играет большую роль в терморегуляции организма. Движение воздуха со скоростью 1 м/с увеличивает теплоотдачу конвекцией в 2 раза, а при скорости 4 м/с теплоотдача увеличивается в 4 раза.

При повышении температуры воздуха заметно возрастает влияние на теплообмен организма влажности воздуха и влагопроницаемости одежды. Увеличение содержания влаги в воздухе уменьшает физиологический дефицит насыщения и тем самым ограничивает теплопотери испарением.

При низких температурах среды повышенная влажность увеличивает теплопотери организмом в результате интенсивного поглощения водяными парами теплового излучения организма.

Таким образом, в производственных условиях, когда температура воздуха и окружающих поверхностей выше температуры поверхности кожи, теплоотдача осуществляется преимущественно излучением и конвекцией. Если же температура воздуха и окружающих поверхностей такая же, как температура кожи, или выше ее, теплоотдача возможна лишь испарением влаги с поверхности тела и с верхних дыхательных путей при условии малого насыщения воздуха водяными парами.

Согласно современным представлениям о функциональной структуре системы терморегуляции (Кандор И. С. и др., 1974], организм человека делится на гомойотермное «ядро» и относительно пойкилотермную «оболочку». Температура «ядра» (или «сердцевины») представляет собой температуру внутренних органов или тканей, которая в норме имеет незначительные колебания – 37 ± 0,5°С.

Показателем температуры «ядра» служит температура, измеренная в подмышечной впадине, полости рта и в других полостях тела.

Температура «ядра» относительно постоянна, изменяется при очень интенсивных термических воздействиях.

Выполнение интенсивной физической работы сопровождается повышением температуры внутренних органов (температуры «ядра»), что обусловлено ускорением химических процессов обмена веществ.

Содержание тепла в «оболочке». «Оболочку» составляют ткани поверхностного слоя тела толщиной в 2,5 см. Изменения теплопроводности «оболочки» главным образом определяют постоянство температуры внутренней среды («ядра»). Теплоизолирующие свойства «оболочки» зависят от характера тканей и от степени их кровоснабжения.

Постоянство температуры «ядра» обеспечивается главным образом путем изменения кровоснабжения и кровенаполнения тканей «оболочки». Таким образом, температура кожи - важный показатель реакции организма на воздействие метеорологических факторов.

Комфортному тепло ощущению соответствует разница кожных температур 3 - 5°С на закрытых одеждой и открытых участках тела. Расчет общего содержания тепла в организме производится по средневзвешенной температуре кожи. Средневзвешенная температура кожи устанавливается путем измерения температуры кожи в нескольких определенных точках участков тела с учетом удельного веса поверхности каждого участка по отношению ко всей поверхности тела.

При отсутствии экстремальных метеорологических условий и напряженной мышечной работы тепловое состояние человека может быть оценено по средневзвешенной температуре кожи, отражающей содержание тепла в «оболочке» тела.

Р. Ф. Афанасьевой (1983) установлены критерии оптимального и допустимого теплового состояния организма человека при выполнении работ различной тяжести (с различным уровнем энерготрат) с целью обоснования нормативных требований к производственному микроклимату. В качестве показателей теплового состояния взяты температура тела и кожи, теплосодержание и его изменение, влагопотери, плотность теплового потока с поверхности тела, частота сердечных сокращений.

Градиент температуры туловища и стоп коррелирует с тепло ощущениями только в том случае, если исследуемые находятся в состоянии покоя или выполняют легкую работу. Показатели оптимального и допустимого теплового состояния обусловлены уровнем энерготрат человека (табл. 4).

Механизмы регуляции теплового гомеостаза очень сложные и представляют собой рефлекторные реакции, возникающие в ответ на температурное раздражение рецепторов кожи, кожных и подкожных сосудов.

Основные центры терморегуляции, координирующие многочисленные процессы, направленные на сохранение температуры тела, расположены в гипоталамусе.

Ядра переднего гипоталамуса рассматриваются как «центр теплоотдачи». Они обеспечивают эффективную отдачу тепла за счет изменения тонуса кожных сосудов, потоотделения, тепловой одышки и др.

 

Таблица 4. Показатели допустимого теплового состояния человека

(по Р. Ф. Афанасьевой и coавт.)

Показатель

Легкая работа, Вт

Работа средней тяжести, Вт

Тяжелая работа (292 - 349 Вт)

105 - 140

141 - 175

176 - 232

233 - 291

Верхняя граница

Температура тела (ректальная), °С

37,4

37,5

37,7

37,8

37,9

Средневзвешенная температура кожи, °С

35,2

34,8

34,3

33,2

32,6

Разность между температурой кожи груди и стопы, °С

1-2

1-2

 

 

 

Средняя температура тела, °С

 

 

36,9

36,9

 

Теплосодержание, кДж/кг

 

 

128

128

 

Накопление тепла, кДж/кг

 

 

2,93

2,93

 

Влагопотери, г/ч

100

145

175

210

300

ЧСС в минуту

85

95

110

120

130

Нижняя граница

Температура тела (ректальная), °С

36,7

36,8

36,9

37

37,2

Средневзвешенная температура кожи, °С

31,7

31,6

30,6

30

29

Разность между температурой кожи груди и стопы, °С

4-6

4-6

 

 

 

Средняя температура тела, °С

 

 

35,2

 

 

Теплосодержание, кДж/кг

 

 

122,25

 

 

Дефицит тепла, кДж/кг

 

 

2,93

 

 

Влагопотери, г/ч

40

60

80

100

120

 

В центре теплоотдачи находятся терморецепторы, реагирующие на повышение температуры притекающей крови. Возбуждение этих рецепторов рефлекторно вызывает увеличение теплоотдачи путем расширения кожных сосудов, увеличения потоотделения и частоты дыхания.

Область заднего гипоталамуса является «центром теплопродукции», регулирующим теплообразование путем изменения скорости окислительных процессов.

Температурной чувствительностью обладают также спинной, продолговатый мозг, структура ретикулярной формации ствола мозга и нейроны коры головного мозга.

Кора головного мозга играет важную роль в терморегуляции организма. Установлен условнорефлекторный механизм терморегуляции у человека в производственных условиях.

Влияние нагревающего микроклимата на физиологические функции организма

Температура кожи тела. Под влиянием микроклиматических условий в организме человека может происходить изменение ряда функций систем и органов, принимающих участие в обеспечении температурного гомеостаза. Одним из важных интегральных показателей теплового состояния организма человека является средняя температура тела. Она зависит от степени нарушения теплового баланса и уровня энерготрат при выполнении физической работы.

При выполнении работы средней тяжести и тяжелой в условиях высокой температуры воздуха температура тела может повышаться от нескольких десятых градуса до 1 - 2 °С и более (при явлениях гипертермии).

Температура кожи объективно отражает реакцию организма на воздействие термического фактора, так как ее температурный режим играет основную роль в теплоотдаче, Будучи более или менее постоянной величиной в обычных условиях на одном и том же участке, температура кожи человека далеко не одинакова на различных участках. Температура кожи лба колеблется в пределах 32,5 - 34 °С, груди – 31 - 33,5 °С, наименьшую температуру имеет кожа пальцев стопы - 24,4 С, кисти - 28,5 °С.

С гигиенической точки зрения для ориентировочной оценки теплового состояния человека, находящегося в состоянии относительного физического покоя, имеет значение разница температур кожи дистальных участков поверхности тела (грудь - стопа) и туловища: если она менее 2 - 1,8 °С - это соответствует ощущению жары, при разнице 2 - 4°С наблюдается хорошее самочувствие, а выше 6°С наступает ощущение холода. С увеличением температуры воздуха разница между температурой туловища и стоп уменьшается.

Высокая температура и состояние обменных процессов. Интенсивное потоотделение (до 6 - 10 л за смену) при работе в условиях воздействия высокой температуры воздуха приводит к обезвоживанию организма, потере минеральных солей и водорастворимых витаминов (С, B1, B2).

Несмотря на восполнение потери жидкости за счет усиленного питья, к концу смены в таких условиях может иметь место отрицательный водный баланс, масса тела уменьшается на 3 - 4 кг и более. Такие потери влаги приводят к сгущению крови, "повышению ее вязкости, нарушению солевого обмена. При тяжелой работе в условиях высокой температуры может выделиться с потом до 30 – 40 г NaCl (всего в организме около 140 г NaCl). При потере хлоридов снижается способность белковых коллоидов к набуханию, следовательно, к удержанию воды. Уменьшается содержание внутриклеточной воды и увеличивается концентрация внеклеточной. Потеря 20%, т. е. 28 - 30 г NaCl, ведет к прекращению желудочной секреции, дальнейшая потеря NaCl вызывает мышечный спазм, судороги. Кроме NaCl, происходит потеря организмом калия, кальция, магния, меди, цинка, йода и других микроэлементов, что может обусловливать нарушение проводимости сердечной мышцы, проницаемости форменных элементов крови. Потеря водорастворимых витаминов (С, B1, B2) при сильном потоотделении может достигать 15 - 25% необходимой суточной дозы, что способствует развитию витаминного дефицита. Так, значительный витаминный дефицит (С, B1 и В2) был обнаружен у рабочих горячих цехов металлургических, фарфоровых и керамических заводов. При высокой температуре воздуха и дефиците воды в организме усиленно расходуются углеводы, жиры, разрушаются белки. При перегревании отмечается усиленный белковый распад, накопление остаточного азота и аммиака в крови, развивается ацидотическое состояние.

Влияние нагревающего микроклимата на функциональное состояние сердечно-сосудистой системы. Действие высокой температуры воздуха на организм нередко вызывает серьезные и стойкие изменения в деятельности сердечно-сосудистой системы.

Под влиянием высокой температуры происходит перераспределение крови за счет увеличения кровенаполнения сосудов кожи, подкожной клетчатки и обеднения кровью внутренних органов. Наблюдается выраженная пульсовая реакция. В начальном периоде температурного воздействия происходит рефлекторное учащение пульса без повышения температуры тела. Затем с увеличением температуры тела устанавливается линейная зависимость между накоплением тепла в организме и приростом частоты сердечных сокращений. С увеличением температуры тела на 1 градус, пульс учащается на 10 ударов в 1.минуту.

Тахикардия при воздействии высокой температуры обусловлена не только повышением температуры крови, действующей на соответствующие центры ЦНС, но и раздражением термоцентров биологически активными веществами, образующимися при гипертермии и стимулирующими работу сердца.

При: постоянном и длительном действии высокой температуры максимальное и минимальное артериальное давление чаще, всего снижается. При значительном же перегревании отмечается повышение максимального и снижение минимального артериального давления, что связано, видимо, с повышением температуры крови, снижением тонуса стенки периферических сосудов, расширением их и падением периферического сопротивления.

Длительное увеличение частоты сердечных сокращений, падение сосудистого тонуса, ведущее к нарушениям равновесия в распределении крови и к недостаточному кровоснабжению мышцы сердца, сгущение крови приводит к ослаблению функциональной способности сердца.

На ЭКГ у рабочих горячих цехов обнаруживаются преходящие и стойкие изменения, проявляющиеся в гипертрофии правого желудочка, изменениях возбудимости предсердий. ЭКГ в ряде случаев позволяет выявлять нарушения обменного характера, дистрофические изменения миокарда (последние обнаруживаются как у молодых рабочих, так и среди рабочих с большим стажем работы в горячих цехах).

Перегревание и дыхание. При воздействии высокой температуры и теплового облучения наблюдаются изменения со стороны дыхания. Значительно повышается возбудимость дыхательного центра, что выражается увеличением частоты дыхания. У рабочих литейных цехов дыхание может учащаться до 50% от исходного, тогда как при аналогичной работе, но при нормальной температуре частота дыхания увеличивается на 11 %. Даже кратковременная работа при высокой температуре воздуха и интенсивном тепловом облучении сопровождается учащением дыхания в 2 раза. Характер дыхания становится поверхностным.

Влияние перегревания на другие системы и органы. Работа в условиях высокой температуры оказывает влияние на функциональное состояние ряда других органов и систем. В условиях высокой температуры снижается секреция желудочного и поджелудочного сока, желчи, угнетается моторика желудка. Печень отвечает снижением гликогенообразовательной функции. Отрицательное влияние на ЦНС проявляется в снижении силы условных рефлексов, ослаблении внимания, ухудшении координации движений, способности к переключению, замедлении реакций, что может быть причиной роста травматизма, снижения работоспособности и производительности труда.

Установлено снижение работоспособности у шахтеров по мере увеличения температуры воздуха. Так, если при температуре воздуха 26 °С работоспособность снижается на 19%, при температуре 32 °С работоспособность падает на 44 %.

Гипертермия. Длительное воздействие высокой температуры, особенно в сочетании, с повышенной влажностью, может привести к значительному накоплению тепла в организме и развитию перегревания организма выше допустимого уровня (гипертермии ) - состояния, при котором температура тела поднимается до 38 – 39 °С. То же случается и при высоком кратковременном нагревании при температуре выше 60 °С, например при ремонте печей.

Клинически при гипертермии наблюдается головная боль, головокружение, общая слабость, искажение цветового восприятия предметов, сухость во рту, тошнота, рвота, гиперемия лица, обильное потоотделение. Пульс и дыхание учащены, температура тела повышена до 38 °С и более. В крови увеличивается содержание остаточного азота и молочной кислоты. Выраженная гипертермия, сопровождающаяся высокой температурой тела (40 - 41 °С) и тяжелым общим состоянием организма, называется тепловым ударом. При этом наблюдается бледность, синюшность, зрачки расширены, дыхание частое, поверхностное (50 – 60 в 1 мин), временами судороги, тахикардия, падение АД (тепловой коллапс), потеря сознания.

На фоне симптомов теплового удара развиваются тетанические судороги мышц конечностей и резкие боли в них при движении, что является судорожной формой перегрева. Наблюдается резкое снижение диуреза, развивается сгущение крови (увеличиваются вязкость крови, количество эритроцитов и гемоглобина).

В тяжелых случаях могут наблюдаться нервно-психические расстройства.

Основную роль в патогенезе перегрева отводят газовому алкалозу и аммиачной интоксикации образованию токсических БАВ, явлению гипоксии в организме. Судорожная форма перегрева является следствием нарушения водно-солевого обмена, обезвоживания и деминерализации организма (потери NaCl).

Тепловой удар возникает в особо неблагоприятных условиях работы: выполнение тяжелой физической работы в условиях высокой температуры, инфракрасного излучения и высокой влажности, в одежде затрудняющей теплоотдачу; работы на открытом воздухе в жарком климате.

Особенности действия лучистого тепла на организм. Действие теплового излучения на организм имеет ряд особенностей, одной из которых является способность ИК лучей различной длины волны проникать на различную глубину и поглощаться соответствующими тканями, оказывая тепловое действие. Короткие инфракрасные лучи (до 1,4 мкм) проникают в ткани на глубину нескольких см, поглощаются кровью и водой в слоях кожи и подкожной клетчатки, а также способны проникать через кости черепной коробки и воздействовать на мозговые оболочки, мозговую ткань.

Длинные ИК лучи (1,4 - 10 мкм) поглощаются верхним 2-х миллиметровым слоем кожи. Особенно сильно поглощаются лучи с длиной волны 6 - 10 мкм, вызывая «калящий эффект».

Воздействие инфракрасного излучения на организм проявляется как общими, так и местными реакциями.

Местная реакция сильнее выражена при облучении длинноволновыми инфракрасными лучами, поэтому при одной и той же интенсивности облучения время переносимости коротковолнового инфракрасного излучения больше, чем длинноволнового. Коротковолновое инфракрасное излучение обладает более выраженным общим действием за счет большей глубины проникновения в ткани тела.

Степень повышения температуры кожи в ответ на инфракрасное облучение находится в зависимости от его интенсивности. Инфракрасное облучение интенсивностью 949 Вт/м2 вызывает ощущение жары, жжения и повышение температуры кожи до 40 - 41 °C. При интенсивности инфракрасного облучения 1717 Вт/м2 и более температура кожи повышается на 10 - 11°С и появляется нетерпимое жжение кожи.

Наряду с ростом температуры облучаемой поверхности тела (в зависимости от времени облучения и одежды) наблюдается рефлекторное повышение температуры на удаленных от области облучения участках. Наблюдается также рефлекторное изменение частоты пульса на фоне неизменной температуры тела. При облучении различных участков тела инфракрасным излучением интенсивностью 698 - 1396 Вт/м2 частота пульса увеличивалась на 5 - 7 ударов в 1 мин. Время пребывания в зоне теплового облучения лимитируется в первую, очередь высокой температурой кожи. Болевое ощущение появляется при температуре кожи 40 - 45 °С (в зависимости от участка).

В основе биологического действия инфракрасного излучения лежит не только рефлекторный процесс, связанный с чисто тепловым эффектом, но и сдвиги в молекулярной структуре клетки, вызванные поглощением квантов инфракрасного излучения. Поглощаясь, лучи инфракрасного излучения вызывают внутримолекулярные колебания, значительно увеличивающие скорость протекания биохимических реакций. Основная часть энергии превращается в тепловую, а также энергию фотохимических реакций. Под влиянием инфракрасного излучения в коже, крови, цереброспинальной жидкости образуются высокоактивные вещества белкового происхождения (типа гистамина, холина, аденозина). Происходит также изменение обмена веществ в виде нерезкого снижения потребления кислорода, повышается содержание азота, уровня натрия и фосфора в крови, снижается поверхностное натяжение крови. Под влиянием инфракрасного излучения снижаются титр антител и фагоцитарная активность лейкоцитов. Эти сдвиги больше выражены при прерывистом облучении. Наблюдаются изменения в симпатоадреналовой и гипофизарно-адреналовой системах, свидетельствующие о напряжении в этих системах.

Сосудистая реакция протекает в зависимости от интенсивности и спектрального состава инфракрасного излучения - коротковолновая вызывает расширение сосудов, длинноволновая - сужение. Артериальное давление изменяется при интенсивности излучения, начиная с 1138 Вт/м2 при температуре воздуха 24 °С и с 775 Вт/м2 при температуре 50 °С.

Повышение артериального давления обусловлено, видимо, некоторым сужением периферических сосудов и увеличением минутного объема крови.

Изменения в организме под воздействием инфракрасного излучения зависят от его интенсивности, спектрального состава, площади и зоны облучения. Так, наибольший эффект, наблюдается при облучении области шеи, верхней половины туловища.

Имеет весьма существенное значение повторяемость облучения. Так, при одинаковом суммарном времени инфракрасного излучения реакция организма в значительной степени зависит от продолжительности однократного облучения и соотношения времени облучения и пауз.

При действии инфракрасной радиации могут развиваться патологические состояния у отдельных лиц в связи с профессиональной деятельностью: солнечный удар, повреждения кожи, глаз (катаракта).

Инфракрасные лучи, оказывая тепловой эффект на глаза, могут вызвать ряд патологических изменений: конъюнктивиты, помутнение и васкуляризацию роговицы и др. Длительное воздействие (10 - 20 лет) коротковолновой инфракрасной радиации большой интенсивности на глаза может вызвать поражение хрусталика - инфракрасная катаракта у сталеваров, прокатчиков, кузнецов, кочегаров, стеклодувов - «катаракта стеклодувов».

Изменения на коже характеризуются эритемой, при интенсивном облучении может быть ожёг, при длительном воздействии на коже может развиться коричнево-красная пигментация.

Солнечный удар может возникнуть при работах на открытом воздухе (строители, геологи, сельскохозяйственные рабочие и др.) в результате интенсивного прямого облучения головы инфракрасным излучением коротковолнового диапазона (1 - 1,4 мкм), следствием чего является тяжелое поражение оболочек, и мозговой ткани вплоть до выраженного менингита и энцефалита. Клиническая картина солнечного удара характеризуется общей слабостью, головной болью, головокружением, шумом в ушах, беспокойством, расстройством зрения, тошнотой, рвотой. В тяжелых случаях - помрачнение сознания, резкое возбуждение, судороги, галлюцинации, бред, потеря сознания. Температура тела при этом в отличие от теплового удара нормальная или незначительно повышена.

 

Влияние низких температур на организм

Многие производственные процессы, выполняемые при пониженной температуре, большой подвижности и влажности воздуха могут быть причинами охлаждения и даже переохлаждения организма (гипотермия), если спецодежда и режимы труда не соответствуют гигиеническим требованиям.

При гипотермии вначале наблюдается возбуждение симпатического отдела вегетативной нервной системы, вследствие чего рефлекторно уменьшается теплоотдача и усиливается теплопродукция.

Снижение теплоотдачи организмом происходит за счет понижения температуры поверхности тела в результате спазма периферических сосудов (особенно в области кистей и стоп) и перераспределения крови во внутренние органы, способствующего поддержанию постоянной температуры внутренних органов, увеличению термического сопротивления тканей организма.

Сужение сосудов пальцев рук и ног, кожи лица чередуется с неактивным расширением их. Этот физиологический процесс, именуемый флюктуацией, является компенсаторными, обеспечивающим защиту от переохлаждения.

При очень резком охлаждении организма при длительном воздействии субнормальных температур наблюдается стойкий сосудистый спазм, который приводит к анемизации тканей, нарушению их питания. Спазм сосудов охлаждаемой поверхности тела вызывает ощущение боли.

При значительном охлаждении организма включается химическая терморегуляция – усиливаются окислительные обменные процессы в организме, возрастает потребление кислорода.

У человека прирост обменных процессов при понижении температуры на 1°С составляет около 10 %, a при интенсивном охлаждении он может возрасти в 3 раза по сравнению с уровнем основного обмена. В процесс теплообразования вовлекается скелетная мускулатура, сначала повышается мышечный тонус, а затем появляются сокращения отдельных мышц - мышечная дрожь, при которой внешней работы не совершается и имеет место превращение всей энергии в тепло. Появление мышечной дрожи в течение некоторого времени может задерживать снижение температуры внутренних органов даже при интенсивном охлаждении поверхности тела.

При воздействии низких температур со стороны сердечно-сосудистой системы отмечается холодовая гипертензия, обусловленная сужением просвета капиллярной сети. Увеличивается систолическое и диастолическое артериальное давление.

В начальном периоде воздействия умеренного холода наблюдается уменьшение частоты дыхания, увеличение объема вдоха. Интенсивное действие холода вызывает рефлекторное учащение дыхания и рост легочной вентиляции. При продолжительном действии холода дыхание становится неритмичным, частота и объем вдоха увеличиваются, одновременно увеличивается легочная вентиляция.

При охлаждении организма изменяется углеводный обмен. Отмечается некоторая гипергликемия, увеличивается содержание пировиноградной, молочной кислоты, гликогенолиз повышен. При охлаждении повышается секреция норадреналина, который стимулирует клеточный обмен и уменьшает теплоотдачу, ограничивая кровоснабжение кожи. При воздействии низких температур наблюдается гипоальбуминемия, которая может служить выражением напряжения иммуноструктурного гомеостаза Подтверждением тому является снижение иммунологической реактивности и фагоцитарной активности лейкоцитов при многодневном действии охлаждения.

В действии низких температур на ЦНС отмечается двухфазность.

При небольшой степени охлаждения (на нижней границе допустимого теплового состояния) в связи с раздражением периферических терморецепторов в ЦНС превалирует процесс возбуждения сопровождающийся повышением деятельности почти всех жизненных органов и систем организма. При большем охлаждении, сопровождающемся снижением температуры тела, отмечается резкое угнетение их функций. Причиной функциональных нарушений в ЦНС, по мнению одних исследователей, является гипоксия, возникающая в результате плохой диссоциации гемоглобина при пониженной температуре, по мнению других – угнетение биологических свойств тканей в результате действия окислительных ферментов.

Результатом действия низких температур, часто сочетающихся с повышенной влажностью и ветром, являются холодовые травмы.

Особое значение в условиях производства приобретает охлаждение, вызываемое излучением тепла телом человека в направлении поверхностей с более низкой температурой (радиационное охлаждение). Радиационное охлаждение сопровождается значительным понижением температуры кожи открытых участков тела, особенно дистальных отделов рук и ног, а также слизистых оболочек дыхательных путей, а при сильном - и охлаждением тела. Радиационное охлаждение вызывает вялую, замедленную реакцию терморегуляционного аппарата. Сосудосуживающая реакция на охлаждение наблюдается не только на поверхности, подвергающейся радиационному охлаждению, но и на других участках тела, подвергающихся конвекционному охлаждению. Изменения, происшедшие в организме под влиянием радиационного охлаждения, носят более стойкий характер, чем при конвекционном охлаждении (что зависит от степени охлаждения).

Восстановление физиологических реакций в условиях радиационного охлаждения носит более длительный характер. В связи с охлаждением и понижением общей сопротивляемости организма у работающих могут возникнуть различные последствия. Результатом острого местного (контактного ) переохлаждения может быть отморожение.

Длительное местное воздействие низких температур, особенно в сочетании с увлажнением, вызывает развитие вегетативного полиневрита верхних конечностей у рабочих мясокомбинатов, колбасных, рыбоконсервных заводов, заверточниц мороженого, сельскохозяйственных рабочих. Воздействие местного и общего охлаждения, особенно в сочетании с увлажнением (моряки, рыбаки, сплавщики леса, рисоводы), может привести к развитию холодовых нейроваскулитов. Заболевание вначале характеризуется развитием функциональных нервно-сосудистых расстройств (синдром Рейно). Наблюдаются зябкость, повышенная потливость, отечность и боли конечностей, мышечные подергивания, судороги, которые исчезают с прекращением холодового воздействия. В выраженных случаях заболевание протекает по типу облитерирующего эндартериита.

Адаптация и акклиматизация при работе в условиях нагревающего и охлаждающего климата

Организм работающих в условиях постоянного воздействия высоких или низких температур находится в состоянии динамического равновесия с внешней средой (динамическая стереотипия) - это равновесие, установившееся благодаря приспособлению организма человека к определенным метеорологическим условиям.

Тепловая адаптация. В основе адаптации к охлаждающему или нагревающему микроклимату лежат процессы, направленные на поддержание определенного уровня и взаимосвязи физиологических систем, органов, механизмов управления, обеспечивающих высокую жизнедеятельность организма.

На начальных этапах адаптация осуществляется за счет активации компенсаторных механизмов - первичных рефлекторных реакций, направленных на устранение или ослабление функциональных сдвигов в организме, вызванных термическими раздражителями.

В процессе приспособления (адаптации) вся деятельность организма путем нейрогуморальных механизмов приводится во все более точное и тонкое уравновешивание с окружающей средой.

В результате адаптационного процесса устанавливается стабильное состояние жизненных систем организма в измененных микроклиматических условиях среды - акклиматизация.

Акклиматизация приспособление к новым климатическим условиям является частным случаем адаптации, развивается в результате длительного пребывания в условиях высоких и низких температур.

Характерными особенностями адаптации и акклиматизации являются улучшение общего состояния, более легкая переносимость высоких и низких температур, сокращение периода восстановления физиологических функций и работоспособности.

Акклиматизация зависит от индивидуальных свойств человека, состояния его физиологических функций до адаптации. Через 4 - 6 недель в условиях высокой температуры уже имеются признаки довольно выраженной адаптации, характеризующиеся меньшим напряжением систем регуляции и сердечно-сосудистой системы, некоторым повышением работоспособности, однако для акклиматизации к высоким температурам необходимы годы.

Адаптация к высоким температурам выражается в повышении работы мышц, значительном снижении основного обмена, уменьшении артериального давления, урежении частоты пульса и дыхания, некотором снижении температуры тела, усилении потоотделения, повышении содержания жировых веществ в поту за счет более активной деятельности сальных желез. В процессе адаптации при выраженном потоотделении наблюдается уменьшение концентрации хлоридов в поту, что способствует уменьшению нарушений водно-солевого обмена.

В процессе адаптации к инфракрасному облучению понижается возбудимость рецепторов, отмечается незначительное учащение пульса и повышение температуры тела, повышение интенсивности потоотделения, увеличение количества жировых веществ и уменьшение концентрации хлоридов в поту.

Адаптация к воздействию холода. Частое и длительное влияние холода приводит к повышению обмена веществ и усилению теплопродукции, быстрее восстанавливается температура кожи, отмечается менее выраженное сужение сосудов кожи, большее ее кровоснабжение, увеличивается объем циркулирующей крови

Активизируется функция щитовидной железы, потенцируя термическое действие норадреналина.

Адаптация наблюдается при условии, если колебания параметров производственного микроклимата не выходят за пределы компенсаторных возможностей организма. Резко выраженные колебания метеорологических условий затрудняют адаптацию организма к ним. Чрезмерные по интенсивности и продолжительности тепловые раздражители могут привести к срыву адаптации.

Срывы адаптации связаны со снижением иммунологической реактивности организма и влекут за собой разнообразные неблагоприятные последствия, в частности, повышенную заболеваемость.

Производственный микроклимат и иммунологическая реактивность организма. Отмечено тормозящее влияние высокой, низкой температур и инфракрасной радиации на иммунологическую реактивность организма. У рабочих горячих цехов, подвергающихся воздействию высокой температуры, инфракрасного облучения и резких температурных колебаний, наблюдается более низкий уровень иммунологической резистентности организма.

Влияние производственного микроклимата на состояние здоровья рабочих. Чрезмерные по интенсивности и продолжительности тепловые раздражители, предъявляющие организму требования, превышающие его компенсаторные возможности, могут приводить к срыву адаптации. Этим, отчасти, объясняется повышенный уровень заболеваемости рабочих горячих цехов, подвергающихся иногда значительной тепловой нагрузке.

Выявлена также четкая зависимость между состоянием иммунологической реактивности и уровнем заболеваемости рабочих горячих цехов. Высокий уровень заболеваемости в зимнее время в не отапливаемых цехах бывает обусловлен перегреванием организма с последующим его охлаждением. Значительный перепад температур приводит к переохлаждению организма и возникновению простудных респираторных заболеваний (ангина, пневмония). Кроме того, возрастает число заболеваний периферической нервной системы (радикулит и др.); функциональные сдвиги сердечно-сосудистой системы, повторяющиеся изо дня в день, фиксируются в виде стойких патологических нарушений (миокардиопатий, кардиодистоний, нарушений сосудистого тонуса, атеросклероза, гипертонической болезни, ИБС). Наблюдается большая частота заболеваний желудочно-кишечного тракта, (хронический гастрит, колит, язвенная болезнь), ЛОР-органов (фарингиты, хронический тонзиллит, риниты и др.).

Холод может вызывать также аллергические заболевания (бронхиальная астма).

Влияние на организм комбинированного действия химических, физических факторов среды на фоне неблагоприятного микроклимата. Высокая температура усиливает токсическое действие многих ядов: ртути, свинца, бензина, окиси углерода, бензола. Повышенная температура, как правило, ускоряет развитие токсического процесса. Реакции организма, возникающие при перегревании (учащение пульса, дыхания, увеличение минутного объема крови), могут привести к значительному ускорению абсорбции газо- и парообразных вредных веществ через дыхательные пути и большему поступлению яда в кровь. Расширение кровеносных сосудов кожи при действии высокой температуры может способствовать большему поступлению в организм химических соединений при попадании их на кожу. Действие ядов в свою очередь снижает устойчивость организма к перегреванию. Так, хлорид кобальта и аналин нарушают терморегуляцию даже в комфортных микроклиматических условиях.

Шум в сочетании с высокой температурой и физическим трудом, вибрация в сочетании с низкой температурой приводят к более выраженным сдвигам, чем действие одного из этих вредных факторов.

Гигиеническое нормирование параметров микроклимата производственных помещений.

Нормы производственного микроклимата установлены ГОСТом «Гигиенические нормы микроклимата промышленных предприятий» и являются едиными для всех производств и всех климатических зон с некоторыми незначительными отступлениями. Принципиальное значение в нормах имеет раздельное нормирование каждого компонента микроклимата: температуры, влажности, скорости движения воздуха. В рабочей зоне должны обеспечиваться параметры микроклимата, соответствующие оптимальным и допустимым микроклиматическим условиям.

Под оптимальными микроклиматическими условиям понимают такие сочетания параметров микроклимата, которые обеспечивают при систематическом воздействии нормальное функционирование организма без напряжения механизмов терморегуляции. Оптимальные параметры микроклимата создаются при кондиционировании воздуха в таких отраслях промышленности, как радиоэлектроника, точное машиностроение и др.

Допустимые микроклиматические условия не должны нарушать здоровье человека. Однако при них возможно некоторое напряжение реакции терморегуляции, носящее кратковременный характер.

В производственных цехах металлургической, машиностроительной промышленности и др., где имеет место большое тепловыделение или значительны размеры отапливаемых помещений, можно ориентироваться на допустимые нормы, но с соблюдением требований в отношении организации режимов труда и отдыха, использованием средств профилактики как перегревания, так и охлаждения организма.

Параметры температуры, влажности и скорости движения воздуха регламентируются с учетом тяжести физического труда (легкая, средней тяжести, тяжелая работа), исходя из величин теплопродукции. При легкой работе разрешается несколько более высокая температура и меньшая скорость движения воздуха, чем при работах средней тяжести и тяжелой. Категория работ устанавливается на основе общих энерготрат организма, а при характеристике помещений по категории выполняемых в них работ ориентируются на работы, в выполнении которых принимают участие 50% и более работающих в них лиц.

Зачитывается также сезон года. При этом выделяют следующие периоды: теплый, холодный и переходный.

В настоящее время утверждены санитарные нормы производственного микроклимата, особенности которых заключаются в следующем: в теплый период года верхние границы допустимой температуры воздуха даны не только для постоянных, но и для непостоянных рабочих мест, где рабочие могут находиться, до 50% рабочего времени или 2 ч непрерывно.

Оптимальные и допустимые скорости движения воздуха несколько снижены по сравнению с ГОСТом 12.1.005 - 76.

Оптимальным условиям микроклимата в оба сезона года удовлетворяет относительная влажность воздуха 40 – 60 %

Допустимая влажность воздуха зимой не должна превышать 75%, а летом она дается в зависимости от температуры воздуха.

Колебания оптимальных значений температуры воздуха по высоте и горизонтали рабочей зоны в течение смены не должны превышать 1 – 2 °С. Впервые определены оптимальные и допустимые параметры микроклимата для лиц, выполняющих очень легкую работу, при которой энерготраты не превышают 104 – 139 Вт.

Колебания допустимой температуры воздуха по высоте и горизонтали рабочей зоны и в течение смены не должны превышать 2 – 3 °С. Температура ограждений и поверхностей оборудования не может быть выше 5°С температуры воздуха.

Тепловое облучение работающих не должно быть более 35 Вт/м2. Тепловое облучение лица и груди работающих на постоянных и непостоянных рабочих местах может достигать 140 Вт/м2 при обязательном использовании средств индивидуальной защиты, в том числе защиты глаз.

Обеспечение санитарных норм направлено на предупреждение перегревания или переохлаждения работающих в условиях конвекционного, радиационного тепла или низких температур.

Профилактика перегревания и переохлаждения организма

Борьба с неблагоприятными влияниями производственного микроклимата осуществляется с использованием мероприятий технологического, санитарно-технического и медико-профилактического порядка.

В профилактике вредного влияния высоких температур инфракрасного излучения ведущая роль принадлежит технологическим мероприятиям.

Мероприятия, направленные на улучшение условии микроклимата, регламентируются «Санитарными правилами по организации технологических процессов и гигиеническими требованиями к производственному оборудованию». № 1042 - 73, разделом «Производственные процессы и оборудование, характеризующиеся выделением тепла». Замена старых и внедрение новых технологических процессов и оборудования способствуют оздоровлению неблагоприятных условии труда. Автоматизация и механизация процессов, дистанционное управление обеспечивают возможность пребывания рабочих вдали от источника радиационного и конвекционного тепла.

Эта группа мероприятий с гигиенической точки зрения является наиболее радикальной. Например, использование установок по непрерывной разливке стали и автоматическая система управления проката металла способствуют ликвидации тяжелых операций, проводившихся в условиях интенсивного инфракрасного излучения.

Основными профессиональными группами становятся операторы, рабочие места которых расположены в специально оборудованных постах управления.

К числу мероприятий технологического характера относятся замена кольцевых печей туннельными в кирпичном, фарфорово-фаянсовом производстве, при сушке форм и стержней в литейном производстве, использование электропечей в сталелитейном производстве, применение штамповки вместо поковочных работ, индукционный нагрев металлов токами высокой частоты.

К группе санитарно-технических мероприятий относятся средства локализации тепловыделений и теплоизоляции, направленные на снижение интенсивности теплового излучения и тепловыделений от оборудования.

Тепловыделения в рабочую зону от нагретых поверхностей и парогазотрубопроводов значительно снижаются при покрытии их теплоизоляционными материалами (стекловата, асбестовая мастика, асботермит и др.)- Теплоизоляция стенок термических печей, снижающая температуру их поверхности со 130 до 80 °С, уменьшает тепловыделения в 5 раз.

Уменьшению теплопоступления в цех способствуют также мероприятия, обеспечивающие герметичность оборудования. Плотно подогнанные дверцы, заслонки, блокировка закрытия технологических отверстий с работой оборудования - все это значительно снижает выделение тепла от открытых источников. Значительно уменьшается теплоизлучение и поступление конвекционного тепла в рабочую зону путем применения экранов, которые по характеру действия разделяются на теплопоглотительные, теплоотводящие и теплоотражательные. Отражательные экраны используются для локализации тепловыделений от поверхности печей, покрытия наружных поверхностей кабин постов управления, кранов. Для теплопоглотительных экранов используют различные виды стекла: силикатное - для защиты от источников с температурой 700°С; органическое стекло - для защиты от источника с температурой 900°С. Эти прозрачные экраны применяют для защиты от тепловых излучений машинистов кранов горячих цехов, операторов постов управления. У открытых источников излучения (окна печей, смотровые окна постов управления в горячих цехах) целесообразно применять водяные экраны, так как зеркальная водяная завеса снижает интенсивность излучения в 5 - 10 раз.

Теплоотводящие экраны, представляющие собой полые стальные плиты, в которых циркулирует вода или водовоздушная смесь, обеспечивают температуру на наружной поверхности экрана не выше 30 – 35 °С. Их устанавливают у стенок мартеновских, стекловаренных печей, Для проведения ремонтных работ в горячих цехах, ковшах используются теплозащитные металлические камеры-кессоны. Для борьбы с инфракрасным излучением вторичного порядка (от нагретых материалов, рабочих металлических площадок и др.) целесообразно использовать распыление воды в воздухе.

Для снижения температуры воздуха на рабочих местах в горячих цехах большую роль играет рациональная вентиляция. Аэрация наиболее эффективна из применяемых средств удаления тепла, так как обеспечивает в рабочей зоне 40 - 60-кратный воздухообмен в час. При наличии на рабочих местах теплового излучения интенсивностью 348 Вт/м2 и более обязательно устройство воздушного душа: При этом температура и скорость движения подаваемого воздуха зависят от времени года, категории работ и интенсивности теплового излучения.

Воздушные души способствуют увеличению отдачи тепла телом человека путем конвекции и испарения. Воздушные, водо-воздушные души, водяные полудуши, базисы рекомендуется применять на местах отдыха рабочих для ускорения восстановления физиологических функций в целях профилактики перегревов у рабочих горячих профессий. На некоторых рабочих местах (посты и пульты управления прокатных станов, кабины машинных кранов) устанавливают охлаждаемые до 5 °С экраны, усиливающие теплоотдачу радиацией (создаются условия «радиационного охлаждения»).

Немалую роль в профилактике перегревания играют индивидуальные средства защиты.

Спецодежда должна быть воздухо- и влагопроницаемой (хлопчатобумажная, льняная; грубошерстное сукно), иметь удобный покрой. Для защиты от инфракрасного излучения используют отражающие ткани, на поверхности которых распылен тонкий слой металлов. Для работы в экстремальных условиях (ликвидация пожаров и др.) применяются специальные костюмы, обладающие, повышенной теплосветоотдачей. Для защиты головы от излучения применяют дюралевые, фибровые каски, войлочные шляпы; для защиты глаз – очки (темные или с прозрачным слоем металла), маски с откидным экраном. При работах на открытом воздухе на постоянных рабочих местах предусматриваются тенты, навесы. Кабины машин окрашивают в светлые тона, оборудуются кондиционерами, теплоизолируются.

Организационные и медико-профилактические мероприятия. Важным фактором, способствующим повышению работоспособности рабочих горячих цехов, является рациональный режим труда и отдыха.

Режим труда разрабатывается применительно к конкретным условиям работы. При этом определяется общая продолжительность отдыха в течение рабочего дня, продолжительность отдельных периодов отдыха. Частые короткие перерывы более эффективны для поддержания работоспособности, чем редкие, но продолжительные.

Для работ, выполняемых на открытых площадках в южных районах разрабатываются режимы труда и отдыха с учетом времени наибольшей инсоляции.

В условиях жаркого климата предлагается начинать рабочий день раньше, а в самые жаркие часы, (с 12 до 18 ч) устраивать перерывы.

Разработаны рациональные режимы труда и отдыха для строителей, работающих в различных климатических зонах страны.

При физических работах средней тяжести и температуре наружного воздуха до 25 °С внутрисменный режим предусматривает 10-минутные перерывы после 60 - 50 мин работы; при температуре наружного воздуха от 25 до 33 °С рекомендуются 15-минутные перерывы после 45 мин работы и разрыв рабочей смены на 4 - 5 ч на период наиболее жаркого времени.

Высока гигиеническая эффективность комнат отдыха с системой искусственного охлаждения панелей. Пребывание в этой комнате рабочих во время кратковременных перерывов приводит к более быстрому восстановлению физиологических функций, чем в обычных комнатах отдыха без охлаждения.

При кратковременных работах в условиях высоких температур (тушение подземных пожаров, ремонт металлургических печей), где температура 80 - 100 °С, большое значение имеет тепловая тренировка.

Устойчивость к высоким температурам может быть в некоторой степени повышена с использованием фармакологических средств (прием дибазола, аскорбиновой кислоты, смесь этих веществ и глюкозы), вдыхания кислорода, аэроионизации.

Существенное значение для профилактики перегревания имеет питьевой режим. В горячих цехах при выполнении физической работы, в условиях продолжительного (50% и более) инфракрасного облучения, когда влагопотери превышают 3,5 - 5 л за смену, должна применяться охлажденная (до 15 – 20 °С), подсоленная (0,5 % раствор хлорида натрия) газированная вода с добавлением солей калия, водорастворимых витаминов. При меньших влагопотерях расход солей восполняется за счет приема пищи. В южных районах страны вместо подсоленной воды применяют белково-витаминные напитки, витаминизированный зелёный байховый чай, яндак - чай, содержащий минеральные соли, микроэлементы, витамины. Эти напитки тонизирующе действуют на организм и восполняют потери витаминов и солей. Постановлением Совета Министров СССР и Президиума Центрального Совета профсоюзов от 10.02.61 г. № 122/3 рабочие горячих цехов металлургических заводов ежедневно бесплатно обеспечиваются витаминами A, B1, В2, С и РР.

В соответствии с приказом МЗ СССР № 700 от 19.06.84 г. рабочие и служащие проходят предварительные и периодические медицинские осмотры 1 раз в 24 мес.

Противопоказаниями к приему на работу в условиях воздействия высокой температуры и инфракрасного излучения являются органические заболевания сердечно-сосудистой системы, почек, желудка, кожи, нарушения овариально-менструальной функции.

Мероприятия по профилактике неблагоприятного воздействия холода должны предусматривать задержку тепла – предупреждение выхолаживания производственных помещений, подбор рациональных режимов труда и отдыха, использование средств индивидуальной защиты и мероприятия по повышению защитных сил организма.

Санитарными нормативами регламентируется устройство ворот, проемов - воздушных завес, шлюзов, используется двойное застекление окон, теплоизоляция полов, стен. В крупных цехах на рабочих местах микроклимат поддерживается местным отоплением - воздушным или радиационным (местное лучистое).

При нефиксированных рабочих местах (работа в холодильниках) и работе на открытом воздухе в холодных климатических зонах организуются специальные помещения для обогревания. Они могут быть стационарными или передвижными - контейнерного типа. Температура в них поддерживается 21 - 23°С и предусматриваются специальные приспособления для быстрого нагревания верхних и нижних конечностей (локальный лучисто-контактный обогрев 696 – 1044 Вт/м2). Используется также напольная система обогрева с применением греющих матов из углеграфитной ткани. На отдельных открытых площадках (строительные paботы, сооружение дорог, мостов) устанавливается местный лучистый обогрев от электрических источников, обеспечивающих постоянную интенсивность облучения независимо от силы ветра.

В борьбе с охлаждением очень важен рациональный режим труда и отдыха. Он способствует укреплению динамического стереотипа, предупреждает преждевременное утомление, увеличивает период устойчивой работоспособности, увеличивает производительность труда. При работах на открытом воздухе в холодный период года (ниже 10 °С) режим труда и отдыха устанавливается в зависимости от параметров наружного воздуха, а на Севере - также и от степени жесткости погоды. Степень жесткости погоды определяется температурой и скоростью движения воздуха - увеличение скорости движения воздуха на 1 м/с соответствует снижению температуры воздуха на 2 °С. Прекращение работ на открытом воздухе при низких температурах производится на основании постановления местных Советов. При неблагоприятных метеорологических условиях - температура воздуха - 10 °С и ниже - обязательны перерывы на обогрев продолжительностью 10 - 15 мин каждый час. При температуре наружного воздуха от - 30 до - 45 °С 15-минутные перерывы на отдых организуются через 60 мин. от начала рабочей смены и после обеда, а затем через каждые 45 мин работы.

В помещениях для обогрева необходимо предусматривать возможность питья горячего чая. Рационально оборудовать эти помещения суховоздушными душами, которые в 4 - 6 раз повышают эффект обогревания. После работы в холодильных камерах целесообразно принимать водяной душ 38 - 40 °С.

Индивидуальные средства защиты имеют большое значение в профилактике охлаждения организма. Материалы для одежды должны обладать хорошим теплозащитным свойством (мех, шерсть, овчина, вата, синтетический мех). При работе в условиях экстремальных температур рекомендуется применение многослойной и обогреваемой электротоком одежды.

Следует иметь в виду, что влажная, загрязненная спецодежда теряет свои защитные свойства, поэтому бытовые помещения должны быть оборудованы сушилками и приспособлениями для чистки.

С целью профилактики охлаждения и повышения устойчивости к воздействию холода рекомендуется закаливание организма путем проведения гидропроцедур, воздушных и солнечных ванн, повышать резистентность организма с помощью УФ-облучений, физических упражнений.

Медицинскими противопоказаниями к работе в условиях холода являются заболевания эндокринных желез, болезней обмена, органов кроветворения, хронические заболевания дыхательных путей, почек, периферических сосудов, суставов и др.