Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
История математики.docx
Скачиваний:
44
Добавлен:
06.07.2022
Размер:
1.92 Mб
Скачать

Всякий многочлен, степень которого не меньше единицы, имеет хотя бы один корень, в общем случае комплексный.

Немедленным следствием из теоремы является то, что многочлен

степени n над полем комплексных чисел имеет в нём не больше n корней.

Доказательство. У многочлена f(x) есть корень a, значит, по теореме Безу, он представим в виде (x-a)g(x), где g(x)— другой многочлен. Применим теорему к g(x) и будем применять её таким же образом до тех пор, пока на месте g(x) не окажется линейный множитель. На самом деле существует еще несколько прямых следствий.

  1. Создание канторовой теории множеств

«Множество — это большое количество, которое позволяет воспринимать себя как одно» — Георг Кантор

Теория множеств — это математическая теория о точно определённых наборах (множествах) отдельных объектов, называемых членами или элементами множества

Первая публикация Кантора, состоящая из четырёх с половиной страниц, является великолепным примером краткости. Она разделена на два отдельных доказательства, совместно приводящих к выводу о существовании по крайней мере двух уникальных видов множеств.

В первой части теории исследуется множество вещественных алгебраических чисел и доказывается, что это бесконечное счётное множество. Здесь не стоит путать — «счётное» не обязательно значит, что счёт ведётся строго в целых числах; в контексте теории множеств «счётное» означает, что множество, пусть даже состоящее из бесконечного числа элементов, можно описать повторяющимся рядом, например, упорядоченной многочленной функцией. Кантор назвал это свойство бесконечного набора чисел соответствия «один к одному» с рядом, наличием взаимно однозначного соответствия.

Если говорить вкратце, то набор, или множество всех вещественных алгебраических чисел можно вывести с помощью какого-то теоретического ряда многочленов с различными степенями и коэффициентами; следовательно, множество всех вещественных алгебраических чисел является бесконечным счётным множеством.

Во второй части труда Кантора анализируется роль вещественных комплексных чисел, также называющихся трансцендентными числами. Транцендентные числа (лучшие примеры которых — это пи и e) имеют любопытное свойство: математически невозможно вывести их с помощью многочленной функции — они не являются алгебраическими. Вне зависимости от величин, количества частей, степеней или коэффициентов, никакой ряд никогда не может посчитать пи в своём наборе бесконечного счётного множества. Затем Кантор указывает, что в любом замкнутом интервале [a,b] существует хотя бы одно транцендентное число, которое никогда нельзя будет подсчитать в бесконечном счётном множестве. Поскольку одно такое число существует, то предполагается, что в семействе вещественных чисел существует бесконечное количество транцендентных чисел.

Таким образом он доказал очень чёткое различие между множеством непрерывных, идущих потоком несчётных чисел и набора счётных чисел, которые можно представить как ряд, например, всех вещественных алгебраических чисел.

Операции: пересечение (intersection) — множество элементов, принадлежащих множеству A и множеству B;

объединение (union) — множество элементов, принадлежащих множеству A или множеству B;

подмножество (subset) — C является подмножеством A, множество C включено во множество A;

собственное (истинное) подмножество — C является подмножеством A, но C не равно A;

относительное дополнение (relative complement) — множество элементов, принадлежащих к A и не к B.

  1. Счетные и несчетные множества

  • Множество называется счетным, если оно равномощно множеству натуральных чисел

  • Бесконечное подмножество счетного множества счетно

  • Объединение множеств конечной или счетной системы счетных множеств есть счетное множество

  • Множество рациональных чисел счетно

  • Множество целых чисел счетно

  1. Проблемы Гильберта. Континуум-гипотеза

В 1900 году в Париже состоялся II Международный Конгресс математиков. На нем выступил немецкий ученый, профессор Давид Гильберт, который в своем докладе поставил 23 самые главные на тот момент, существенные проблемы, касающиеся математики, геометрии, алгебры, топологии, теории чисел, теории вероятностей.

На данный момент решены 16 проблем из 23. Ещё 2 не являются корректными математическими проблемами (одна сформулирована слишком расплывчато, чтобы понять, решена она или нет, другая, далёкая от решения, — физическая, а не математическая). Из оставшихся пяти проблем две не решены никак, а три решены только для некоторых случаев.

Список проблем Гильберта:

1. Континуум–гипотеза. Существует ли бесконечное кардинальное число строго между кардиналами множеств целых и действительных чисел? Решена Полом Коэном в 1963 г. — ответ на вопрос зависит от того, какие аксиомы используются в теории множеств.

  1. Геометрия Лобачевского

Неевклидова геометрия — это геометрия, которая использует набор аксиом, отличных от аксиом евклидовой геометрии, в частности, не включает постулата о параллельных прямых. Основные открытия геометрических систем, в которых аксиомы Евклида не верны, были сделаны Николаем Лобачевским и Георгом Риманом.

Геометрия Лобачевского строится на основе тех же аксиом, что и евклидова, за исключением только одной аксиомы о параллельных. Согласно аксиоме о параллельных евклидовой геометрии, через точку, не лежащую на данной прямой а, проходит только одна прямая, которая лежит в одной плоскости с прямой а и не пересекает эту прямую. В геометрии Лобачевского принимается, что таких прямых несколько (затем доказывается, что их бесконечно много).

Таким образом, отличия евклидовой геометрии от геометрии Лобачевского в том, что порядок точек на прямой является линейным, т. е. подобным порядку в множестве действительных чисел. Кроме того, в геометриях Евклида и Лобачевского каждая прямая, лежащая в данной плоскости, разделяет эту плоскость на две части