Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

книги / Экспериментальные исследования усталостного поведения материалов при многоосных циклических воздействиях

..pdf
Скачиваний:
0
Добавлен:
20.11.2023
Размер:
65.19 Mб
Скачать

Таб лица 4.7 Параметр ы модели и значения отклонений

Номер набора данных

1

2

 

3

 

 

4

Авторы

A.Fatemi

Y. W ang

T. Xia

 

 

X. Wang

[16;44]

[59]

[60–63]

 

 

[58]

 

 

 

 

 

 

 

 

 

 

 

 

 

τ

, МПа

434,6

559

,0

 

591,9

 

, МПаτ

–0,082

–0,1

04

 

–0

,118

σ

1093,7

886

,9

 

11

98,1

τ , МПаσ

–0,133

–0,1

02

 

–0

,145

283,0

290

,0

 

 

283,0

σ

, МПа

450,0

545

,0

 

 

450,0

τ

 

, МПа

540,7

529

,1

 

 

613,1

 

 

 

–0,140

–0,1

42

 

–0

,171

 

 

0,240

0,210

0,117

 

 

0,162

 

 

 

 

 

 

 

 

 

 

0,218

0,150

0,110

 

 

0,157

 

 

 

а

б

в

г

Рис. 4.10. Сравн ение экспериментальной и предсказанной долговечности без учета (а, в, д, ж) и при учете (б, г, е, з) угла сдвига фаз для наборов данных 1 (а, б), 2 (в, г), 3 (д, е) и 4 (ж, з)

101

д

е

ж

з

Рис. 4.10. Окончание

102

ЗАКЛЮЧЕНИЕ

В монографии приведены новые результаты экспериментальных исследований характеристик сопротивления мало- и многоцикловой усталости конструкционных сталей и сплавов при двухосном циклическом нагружении. Показана зависимость циклической долговечности рассматриваемых материалов от комплекса сложных условий термомеханического нагружения, включающего в том числе температуру, вид напряженного состояния, характер двухосного нагружения и переменные параметры цикла. Использован оригинальный подход для классификации режимов многоосной усталости, в рамках которой общий случай многоосного циклического нагружения описывается двадцатью девятью независимыми параметрами. Для прогнозирования циклической долговечности в области мало- и многоцикловой двухосной усталости при растяжении – сжатии и кручении авторами предложена модификация известной модели Сайнса и показаны возможности прогнозирования ресурса конструкционных сталей и сплавов с использованием этой модели для разных режимов двухосного циклического нагружения.

103

СПИСОК ЛИТЕРАТУРЫ

1.Anes V., Reis L., de Freitas M. Asynchronous multiaxial fatigue damage evaluation // Procedia Engineering. 2015. Vol. 101. P. 421–429.

2.Anes V., Reis L., de Freitas M. Multiaxial fatigue damage accumulation under variable amplitude loading conditions // Procedia Engineering. 2015. Vol. 101. P. 117–125.

3.Anes V., Reis L., Li B., de Freitas M. Crack path evaluation on HC and BCC microstructures under multiaxial cyclic loading // International Journal of Fatigue. 2014. Vol. 58. P. 102–113.

4.Anes V., Reis L., Li B., Fonte M., de Freitas M. New approach for analysis of complex multiaxial loading paths // International Journal of Fatigue. 2014. Vol. 62. P. 21–33.

5.ASTM E 1012-19. Standard Practice for Verification of Testing Frame and Specimen Alignment Under Tensile and Compressive Axial Force Application. 2019.

6.ASTM E 2207-15. Standard Practice for Strain-Controlled Axial-Torsional Fatigue Testing with Thin-Walled Tubular Specimens. 2015.

7.ASTM E 466-21. Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials. 2021.

8.ASTM E 606-04. Standard Practice for Strain-Controlled Fatigue Testing. 2004.

9.Bennebach M., Palin-Luc T. Effect of static and intermittent shear stress on the fatigue strength of notched components under combined rotating bending and torsion // Procedia Engineering. 2015. Vol. 133. P. 107–114.

10.Bennebach M., Palin-Luc T., Messager A. Effect of mean shear stress on the fatigue strength of notched components under multiaxial stress state // Procedia Engineering. 2018. Vol. 213. P. 25–35.

104

11.Bernasconi A., Filippini M., Foletti S., Vaudo D. Multiaxial fatigue of a railway wheel steel under non-proportional loading // International Journal of Fatigue. 2006. Vol. 28. P. 663–672.

12.Brown M.W., Miller, K.J. Initiation and growth of cracks in biaxial fatigue // Fatigue of Engineering Materials and Structures. 1979. Vol. 1. P. 231–246

13.Crossland B. Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel // Proc. Int. Conf. Fatigue of Metals. London, 1956. P. 138–149.

14.Findley W.N. A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending // Journal of Engineering for Industry. 1959. Vol. 81. P. 301–306.

15.Gates N., Fatemi A. Notched fatigue behavior and stress analysis under multiaxial states of stress // International Journal of Fatigue. 2014. Vol. 67. P. 2–14.

16.Gates N.R., Fatemi A. On the consideration of normal and shear stress interaction in multiaxial fatigue damage analysis // International Journal of Fatigue. 2017. Vol. 100. P. 322–336.

17.Gerber H. Bestimmung der zulassigen Spannungen in Eisenkonstructionen. // Z. Bayerischen Architeckten Ingenieur-Vereins. 1874. No. 6. P. 101–110.

18.Glinka G., Shen G., Plumtree A. A multiaxial fatigue strain energy density parameter related to the critical fracture plane // Fatigue of Engineering Materials and Structures. 1995. Vol. 18. P. 37–46.

19.Goodman J. Mechanics Applied to Engineering. London: Longmans Green. 1899.

20.Hor A., Saintier N., Camille R., Palin-Luc T., Morel F. Statistical assessment of multiaxial HCF criteria at the grain scale // International Journal of Fatigue. 2014. Vol. 67. P. 151–158.

21.Houria M., Nadot Y., Fathallah R., Roy M., Majer D.M. Influence of casting defect and SDAS on the multiaxial fatigue behavior of A356-T6 alloy including mean stress effect // International Journal of Fatigue. 2015. Vol. 80. P. 90–102.

105

22.Kaufman R.P., Topper T. The influence of static mean stresses applied normal to the maximum shear planes in multiaxial fatigue // European Structural Integrity Society. 2003. Vol. 31. I. C. P. 123–143.

23.Kluger K., Lagoda T. New energy model for fatigue life determination under multiaxial loading with different mean values // International Journal of Fatigue. 2014. Vol. 66. P. 229–245.

24.Lagoda T. Energy models for fatigue life estimation under uniaxial random loading. Part II: Verification of the model // International Journal of Fatigue. 2001. Vol. 23. P. 481–489.

25.Li J., Zhang Z., Sun Q., Li C. Multiaxial fatigue life prediction for various metallic materials based on the critical plane approach // International Journal of Fatigue. 2011. Vol. 33. P. 90–101.

26.Liu K.C., Wang J.A. An energy method for predicting fatigue life, crack orientation, and crack growth under multiaxial loading condition // International Journal of Fatigue. 2001. Vol. 23. P. 129–134.

27.Liu T., Shi X., Zhang J., Fei B. Crack initiation and propagation of 30CrMnSiA steel under uniaxial and multiaxial cyclic loading // International Journal of Fatigue. 2019. Vol. 122. P. 240–255.

28.Marciniak Z., Rozumek D., Macha E. Fatigue lives of 18G2A and 10HNAP steels under variable amplitude and random non-proportional bending with torsion loading // International Journal of Fatigue. 2008. Vol. 30. P. 800–813.

29.Marmi A.K., Habraken A.M., Duchene L. Multiaxial fatigue damage modeling at macro scale of Ti6Al4V alloy // International Journal of Fatigue. 2009. Vol. 31. P. 2031–2040.

30.Matake T. An explanation on fatigue limit under combined stress // Bulletin of the Japan Society of Mechanical Engineers. 1977. Vol. 20. P. 257–263.

31.Mayer H., Schuller R., Karr U., Hahn M., Bacher-Höchst M. Mean stress sensitivity and crack initiation mechanisms of spring steel for torsional and axial VHCF loading // International Journal of Fatigue. 2016. Vol. 93. P. 309–317.

106

32.Mayer H., Schuller R., Karr U., Irrasch D., Fitzka M., Hahn M., Bacher-Höchst M. Cyclic torsion very high cycle fatigue of VDSiCr spring steel at different load ratios // International Journal of Fatigue. 2015. Vol. 70. P. 322–327.

33.McDiarmid D.L. A general criterion for high cycle multiaxial fatigue failure // Fatigue of Engineering Materials and Structures. 1990. Vol. 14. P. 429–453.

34.Močilnik V., Gubeljak N., Predan J. The Influence of a Static Constant Normal Stress Level on the Fatigue Resistance of High Strength Spring Steel // Theoretical and Applied Fracture Mechanics. 2017. Vol. 91. P. 139–147.

35.Morrow J. Fatigue properties of metals / Section 3.2. In Fatigue Design Handbook. Warrendale: Society of Automotive Engineers, 1968. 132 p.

36.Pallarés-Santasmartas L., Albizuri J., Avilés A., Saintier N., Merzeau J. Influence of mean shear stress on the torsional fatigue behaviour of 34CrNiMo6 steel // International Journal of Fatigue. 2018. Vol. 113. P. 54–68.

37.Pallarés-Santasmartas L.; Albizuri J.; Avilés A.; Avilés R. Mean Stress Effect on the Axial Fatigue Strength of DIN 34CrNiMo6 Quenched and Tempered Steel // Metals. 2018. Vol. 8. I. 4, no. 213.

38.Papuga J., Halama R. Mean stress effect in multiaxial fatigue limit criteria // Archive of Applied Mechanics. 2018. P. 1–12.

39.Papuga J., Nesládek M., Hasse A., Cízová E., Suchý L. Benchmarking Newer Multiaxial Fatigue Strength Criteria on Data Sets of Various Sizes // Metals. 2022. Vol. 12. I. 2, no. 289.

40.Pejkowski L., Skibicki D., Seyda J. Stress-strain response and fatigue life of a material subjected to asynchronous loadings // AIP Conference Proceeding. 2018. Vol. 2028, no. 020016.

41.Reis L., Li B., de Freitas M. Crack initiation and grow path under multiaxial fatigue loading in structural steels // International Journal of Fatigue. 2009. Vol. 31. P. 1660–1668.

107

42.Saintier N., Palin-Luc T., Benabes J., Cocheteux F. Nonlocal energy based fatigue life calculation method under multiaxial variable amplitude loadings // International Journal of Fatigue. 2013. Vol. 54. P. 68–83.

43.Shamsei N., Gladskyi M., Panasovskyi K., Shukaev S., Fatemi A. Multiaxial fatigue of titanium including step loading and load path alteration and sequence effects // International Journal of Fatigue. 2010. Vol. 32. P. 1862–1874.

44.Sharifimehr S., Fatemi A. Interaction Between Normal and Shear Stresses and Its Effect on Multiaxial Fatigue Behavior // MATEC Web of Conferences. 2019. Vol. 300, no. 16007.

45.Sines G. Behaviour of metals under complex static and alternating stresses // Metal Fatigue. 1959. P. 145–169.

46.Sines G. Failure of materials under combined repeated stresses with superimposed static stress. National Advisory Committee for Aeronautics (N.A.C.A). Washington. Technical Note 3495, 1955. 69 p.

47.Skibicki D., Pejkowski L. Low-cycle multiaxial fatigue behaviour and fatigue life prediction for CuZn37 brass using the

stress-strain models // International Journal of Fatigue. 2017. Vol. 102. P. 18–36.

48.Smith J.O. The effect of range of stress on the fatigue strength of metals. Urbana: University of Illinois Engineering Experiment Station, 1942. 52 p.

49.Smith K.N., Watson P., Topper T.H. A stress-strain function for the fatigue of metals // Journal of Materials JMLSA. 1976. Vol. 5. P. 767–778.

50.Socie D.F Multiaxial fatigue damage models // Journal of Engineering Materials and Technology. 1987. Vol. 109. P. 292–298.

51.Sonsino C.M., Kueppers M., Eibl M., Zhang G. Fatigue strength of laser beam welded thin steel structures under multiaxial loading // International Journal of Fatigue. 2006. Vol. 28. P. 657–662.

52.Suresh S. Fatigue of materials. Cambridge Unversity Press, 1998. 679 p.

108

53.Susmel L. Four stress analysis strategies to use the Modified Wohler Curve Method to perform the fatigue assessment of weldments subjected to constant and variable amplitude multiaxial fatigue loading // International Journal of Fatigue. 2014. Vol. 67. P. 38–54.

54.Susmel L., Askes H. Modified Wohler Curve Method and multiaxial fatigue assessment of thin welded joints // International Journal of Fatigue. 2012. Vol. 43. P. 30–42.

55.Tovo R., Lazzarin P., Berto F., Cova M., Maggiolini E. Experimental investigation of the multiaxial fatigue strength of ductile cast iron // Theoretical and Applied Fracture Mechanics. 2014. Vol. 73. P. 60–67.

56.Wang C.H., Miller K.J. The effect of mean shear stress on torsional fatigue behavior // Fatigue and Fracture of Engineering Materials and Structures. 1991. Vol. 14, no. 2/3. P. 293–307.

57.Wang Q., Xin C., Sun Q., Xiao L., Sun J. Biaxial fatigue behavior of gradient structural purity titanium under in-phase and out- of-phase loading // International Journal of Fatigue. 2018. Vol. 116. P. 602–609.

58.Wang X.-W., Shang D.-G. Determination of the critical plane by a weight-function method based on the maximum shear stress plane under multiaxial high-cycle loading // International Journal of Fatigue. 2016. Vol. 90. P. 36–46.

59.Wang Y.-Y., Yao W.-X. A multiaxial fatigue criterion for various metallic materials under proportional and nonproportional loading // International Journal of Fatigue. 2006. Vol. 28. P. 401–408.

60.Xia T., Yao W. Comparative research on the accumulative damage rules under multiaxial block loading spectrum for 2024-T4 aluminum alloy // International Journal of Fatigue. 2013. Vol. 48. P. 257–265.

61.Xia T., Yao W., Ji Y.F., Wang C.J. Study on the accumulative fatigue damage rules under multiaxial two-stage step spectra constructed by loadings with similar lives // Fatigue Fract. Eng. Mater. Struct. 2015. Vol. 38. I. 7. P. 838–850.

109

62.Xia T., Yao W., Lu J.-G. On the Shear Stress Parameter of Thin-walled Tubular Specimens under Torsional Loading // Procedia Engineering. 2014. Vol. 74. P. 191–198.

63.Xia T., Yao W., Zou J., Gao D. A novel accumulative fatigue damage model for multiaxial step spectrum considering the variations of loading amplitude and loading path // Fatigue Fract. Eng. Mater. Struct. 2015. Vol. 39. I. 2. P. 194–205.

64.Yankin A.S., Lykova A.V., Mugatarov A.I., Wildemann V.E., Ilinykh A.V. Influence of additional static stresses on biaxial low-cycle fatigue of 2024 aluminum alloy // Frattura ed Integrità Strutturale. 2022. Vol. 16, no. 62 P. 180–193.

65.Yankin A.S., Wildemann V.E., Mugatarov A.I. Influence of different loading paths on the multiaxial fatigue behavior of 2024 aluminum alloy under the same amplitude values of the second invariant of the stress deviator tensor // Frattura ed Integrità Strutturale. 2021. Vol. 15, no. 55. P. 327–335.

66.Yu Q., Zhang J., Jiang Y., Li Q. Multiaxial fatigue of extruded AZ61A magnesium alloy // International Journal of Fatigue. 2011. Vol. 33. P. 437–447.

67.Zhang J., Shi X., Fei B. High cycle fatigue and fracture mode analysis of 2A12-T4 aluminum alloy under out-of-phase axialtorsion constant amplitude loading // International Journal of Fatigue. 2012. Vol. 38. P. 144–154.

68.Биргер И.А. Расчет на прочность деталей машин: справочник. М.: Машиностроение, 1979. 702 c.

69.Бураго Н.Г., Журавлев А.Б., Никитин И.С. Модели многоосного усталостного разрушения и оценка долговечности элементов конструкций // Механика твердого тела. 2011. № 6.

С. 22–33.

70.Вахромеев А.М. Определение циклической долговечности материалов и конструкций транспортных средств: методические указания. М.: МАДИ, 2015. 64 с.

71.Вильдеман В.Э., Третьяков М.П., Староверов О.А., Янкин А.С. Влияние режимов двухосного нагружения на

110

Соседние файлы в папке книги