Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
[2.1] 3D Imaging, Analysis and Applications-Springer-Verlag London (2012).pdf
Скачиваний:
12
Добавлен:
11.12.2021
Размер:
12.61 Mб
Скачать

404

H. Wei and M. Bartels

Fig. 9.14 DSM (left column) and filtered object points (right column) obtained from skewness balancing of two different LIDAR tiles. Top: Thamesmead, London, UK (courtesy of Environment Agency, UK). Bottom: Mannheim, Germany (courtesy of TopoSys GmbH and the Stadt Mannheim, Germany)

9.5 Research Challenges

With the development of remote sensing technology and advanced signal processing algorithms, 3D DEM generation from remote sensing has demonstrated enormous potential with advantages of automation, economy, and large coverage of terrain. Related techniques have been maturing due to significant investment in sensing devices, instruments, processing algorithms, and software development. The launch of Earth observation satellites, such as, Envisat, Landsat, GeoEye, and Worldview has brought opportunities as well as challenges to the research communities.

When the high accuracy, high resolution, and high density data are continuously acquired from various Earth observation satellites, huge datasets are generated. How to store and retrieve these datasets is the first challenge. These may require reliable servers and tangible databases for data storage, and robust algorithms for information retrieval from the databases if needed.

9 3D Digital Elevation Model Generation

405

For DEM generation from stereoscopic imagery, further improving DEM accuracy requires better mathematical models which can adaptively correct errors caused by sensors’ platform attitude instability and geometric distortion of images. Automation demands more robust algorithms for image matching processes.

As described previously, most current techniques used in 3D DEM generation from remote sensing need intensive interaction from operators. They are timeconsuming and the accuracy of the final product is difficult to control. This demands researchers’ further understanding of physical properties of sensing elements (e.g. SAR) with accurate theoretical models for signal interpretation, and better knowledge of satellite orbits and imaging geometry (for both stereo images and SAR images).

For LIDAR, power consumption is the key issue for spaceborne missions although lasers can provide more accurate elevation data compared with other devices. Quantitative analysis of the effects caused by weather and atmospheric conditions to LIDAR is required to ensure that the raw signal/data is interpreted correctly.

The above aspects need to be addressed in order to bring more automation and higher accuracy to the DEMs generated from remote sensing.

9.6 Concluding Remarks

In this chapter, three methods used for 3D DEM generation from remote sensing have been introduced. These are DEM generation from optical stereoscopic imagery, InSAR, and airborne LIDAR. All of these have shown enormous potential in many application areas. After working through this chapter, it is expected that readers appreciate the achievements and are aware of the problems remaining in this research area. Readers should have sufficient knowledge to answer the questions presented in Sect. 9.8 and carry out the exercises in Sect. 9.9, with the comprehensive references listed at the end of this chapter. Also, readers should be able to do the following.

Outline processing procedures of DEM generation from satellite stereoscopic imagery, InSAR, and airborne LIDAR.

Explain how the 3D passive vision technology developed in the computer vision community (Chap. 2) can be applied to DEM generation from satellite stereoscopic imagery.

Explain how the 3D active vision technology can be used for DEM generation from InSAR and LIDAR.

Appreciate various algorithms developed in the area of DEM generation for stereo-matching, image registration, phase unwrapping, and data filtering.

Estimate DEM accuracy based on knowledge of imaging geometry and relative physical properties of sensing devices.

406

H. Wei and M. Bartels

Identify advantages and disadvantages for DEM generation from different remote sensing approaches.

Perform DEM generation with available data (possibly through the use of commercial software packages).

9.7 Further Reading

The following books are recommended for the purposes of broadening knowledge in the field, from instruments for raw data acquisition to DEM applications.

1.James B. Campbell (1996), Introduction to Remote Sensing, 2nd edition, Taylor & Francis Ltd—This book provides an introduction level of remote sensing including image acquisition, analysis, and applications. Both passive imaging and active radar are discussed. Spaceborne as well as airborne remote sensing techniques are covered.

2.Peter Burrough, and Rachael A. McDonnell (1998), Principles of Geographical Information Systems, Oxford University Press. Readers may access this book to gain knowledge of spatial science and geographical information systems (GIS).

3.Chris Oliver and Shaun Quegan (1998), Understanding Synthetic Aperture Radar Images, Artech House Inc. This book describes insight of SAR and SAR image analysis and processing. It helps readers gain knowledge of SAR principles and image formation.

4.Ramon F. Hanssen (2001), Radar Interferometry: Data Interpretation and Error Analysis, Kluwer Academic Publishers. This book is specifically dedicated to InSAR. It details fundamentals of radar system theory, interferometric processing, functional models for InSAR, data analysis and error estimation.

5.Norbert Pfeifer and Gottfried Mandlburger (2009), Chap. 11—LIDAR data filtering and DTM generation, Topographic Laser Ranging and Scanning—Principles and Processing, Edited by Jie Shan and Charles K. Toth, CRC Press. This book explores LIDAR’s potentials and capabilities in topographic mapping. Chapter 11 describes DEM/DTM generation from LIDAR.

9.8 Questions

1.Outline the procedure of DEM generation from satellite stereoscopic image pairs, and indicate possible advantages of using satellite imagery (relative to the use of airborne imagery) in DEM generation.

2.Briefly discuss the physical principle of InSAR in DEM generation, and outline the processing stages of DEM generation from satellite InSAR.

3.Explain possible issues involved in the processes stated in Q. (2), and explain the related solutions.

9 3D Digital Elevation Model Generation

407

4.Compare and contrast DEM generation methods of satellite stereoscopic imagery and InSAR, consider aspects of sensor type, resolution, scale, orbit, timing, wavelengths used, and satellite altitude. You may need additional information from the further reading materials to answer this question.

5.Explain LIDAR operation in DEM/DTM generation and outline the key steps to generate the final DEM/DTM from the raw LIDAR point cloud.

9.9 Exercises

1.Simulate an along-track satellite stereoscopic imaging geometry and establish the geometric model of the prospective projection based on the setting illustrated in Fig. 9.2(left).

2.For the across-track satellite stereoscopic imaging shown in Fig. 9.2(right), derive the mathematical model of the perspective projection geometry associated with the cameras and the terrain surface and speculate possible errors which affect the accuracy of final DEMs generated from this setting.

3.Write an essay which discusses state-of-the-art stereo image matching algorithms specifically used for DEM generation from satellite stereoscopic imagery. In preparation of this essay, you may look for image matching algorithms used in commercial DEM generation software products.

4.Based on the discussion in Sect. 9.3.1.2, derive the phase unwrapping algorithms of branch-cuts and least squares.

5.Earth observation based on satellite missions normally is very expensive so that it requires resources of a national government to fund the related projects. Many people question whether it is necessary to spend government funds for such programs. Write an essay, with your argument, to justify the costs. You may choose positive or negative views.

6.Compare LIDAR filtering techniques introduced in this chapter and implement them in your choice of programming language.

7.Implement the Skewness Balancing algorithm in a programming language of your choice, and apply it to a LIDAR point cloud data set to generate a DEM. You may access the LIDAR data at http://www.commission3.isprs.org/wg4/.

References

1.Abdelfattah, R., Nicolas, J.M.: Topographic SAR interferometry formulation for highprecision DEM generation. IEEE Trans. Geosci. Remote Sens. 40(11), 2415–2426 (2002)

2.Ackermann, F.: Digital image correlation: performance and potential application in photogrammetry. Photogramm. Rec. 11(64), 429–439 (1984)

3.Ackermann, F.: Airborne laser scanning—present status and future expectations. ISPRS J. Photogramm. Remote Sens. 54, 64–67 (1999)

4.Adams, J.C., Chandler, J.H.: Evaluation of LIDAR and medium scale photogrammetry for detecting soft-cliff coastal change. Photogramm. Rec. 17(99), 405–418 (2002)

408

H. Wei and M. Bartels

5.Adi, K., Suksmono, A.B., Mengko, T.L.R., Gunawan, H.: Phase unwrapping by Markov chain Monte Carlo energy minimization. IEEE Geosci. Remote Sens. Lett. 7(4), 704–707 (2010)

6.Ahlberg, S., Soderman, U., Elmqvist, M., Persson, A.: On modeling and visualization of high resolution virtual environments using LIDAR data. In: Proc. 12th International Conference on Geoinformatics, pp. 299–306 (2004)

7.Ahokas, E., Yu, X., Oksanen, J., Hyyppa, J., Kaartinen, H., Hyyppa, H.: Optimization of the scanning angle for countrywide laser scanning. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(3/W19), 115–119 (2005)

8.Arefi, H., Hahn, M.: A morphological reconstruction algorithm for separating off-terrain points from terrain points in laser scanner data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(3/W19), 120–125 (2005)

9.ASTER GDEM Validation Team: ASTER Global DEM Validation Summary Report (2009)

10.Axelsson, P.: Processing of laser scanner data—algorithms and applications. ISPRS J. Photogramm. Remote Sens. 54(2–3), 138–147 (1999)

11.Baker, H.H., Binford, T.D.: A system for automated stereo mapping. In: Proceedings of the Symposium of the ISPRS Commission II, Ottawa, Canada (1982)

12.Baltsavias, E.P.: Airborne laser scanning: basic relations and formulas. ISPRS J. Photogramm. Remote Sens. 54, 199–214 (1999)

13.Baltsavias, E.P.: Airborne laser scanning: existing firms and other resources. ISPRS J. Photogramm. Remote Sens. 54, 199–214 (1999)

14.Baltsavias, E.P.: A comparison between photogrammetry and laser scanning. ISPRS J. Photogramm. Remote Sens. 54, 83–94 (1999)

15.Bao, Y., Li, G., Cao, C., Li, X., Zhang, H., He, Q., Bai, L., Chang, C.: Classification of LIDAR point cloud and generation of DTM from LIDAR height and intensity data in forested area. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVII(3/W19), 313–318 (2008)

16.Bartels, M., Wei, H.: Segmentation of LIDAR data using measures of distribution. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(7), 426–431 (2006)

17.Bartels, M., Wei, H.: Threshold-free object and ground point separation in LIDAR data. Pattern Recognit. Lett. 31(10), 1089–1099 (2010)

18.Bartels, M., Wei, H., Mason, D.C.: Wavelet packets and co-occurrence matrices for texturebased image segmentation. In: IEEE International Conference on Advanced Video and Signal-Based Surveillance, vol. 1, pp. 428–433 (2005)

19.Bartels, M., Wei, H., Mason, D.C.: DTM generation from LIDAR data using skewness balancing. In: Proceedings of 18th International Conference on Pattern Recognition, I, pp. 566– 569 (2006)

20.Bater, C.W., Coops, N.C.: Evaluating error associated with LIDAR-derived DEM interpolation. Comput. Geosci. 35(2), 289–300 (2009)

21.Bouillon, A., Bernard, M., Gigord, P., Orsoni, A., Rudowski, V., Baudoin, A.: SPOT 5 HRS geometric performances: using block adjustment as a key issue to improve quality of DEM generation. ISPRS J. Photogramm. Remote Sens. 60(3), 134–146 (2006)

22.Brenner, C.: Towards fully automatic generation of city models. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 33(3), 85–92 (2000)

23.Bretar, F., Roux, M.: Hybrid image segmentation using LIDAR 3D planar primitives. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(3/W19), 72–78 (2005)

24.Bretar, F., Pierrot-Deseilligny, M., Roux, M.: Recognition of building roof facets by merging aerial images and 3D LIDAR data in a hierarchical segmentation framework. In: Proceedings of 18th International Conference on Pattern Recognition, IV, pp. 5–8 (2006)

25.Briese, C., Pfeifer, N.: Airborne laser scanning and derivation of digital terrain models. Opt. 3-D Meas. Tech. V, 81–87 (2001)

26.Briese, C., Pfeifer, N., Dorninger, P.: Applications of the robust interpolation for DTM determination. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXIV(3A), 55–61 (2002)

9 3D Digital Elevation Model Generation

409

27.Brovelli, M.A., Cannata, M., Longoni, U.M.: Managing and processing LIDAR data within GRASS. In: Proceedings of the Open Source GIS—GRASS Users Conference, I (2002). 29 pages

28.Burton, T., Neill, L.: Use of low-level LIDAR systems for commercial large-scale survey applications. In: Annual Conference of the Remote Sensing and Photogrammetry Society, I(1), (2007). 6 pages

29.Carballo, G.F., Fieguth, P.W.: Hierarchical network flow phase unwrapping. IEEE Trans. Geosci. Remote Sens. 40(8), 1695–1708 (2002)

30.Charaniya, A.P., Manduchi, R., Lodha, S.K.: Supervized parametric classification of aerial LIDAR data. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshop, pp. 30–38 (2004)

31.Chen, C., Yue, T.: A method of DEM construction and related error analysis. Comput. Geosci. 36(6), 717–725 (2010)

32.Chen, Q., et al.: Filtering airborne laser scanning data with morphological methods. Photogramm. Eng. Remote Sens. 73(2), 175–185 (2007)

33.Cobby, D.M.: The use of airborne scanning laser altimetry for improved river flood prediction. University of Reading (2002)

34.Cobby, D.M., Mason, D.C., Davenport, I.J.: Image processing of airborne scanning laser altimetry data for improved river flood modeling. ISPRS J. Photogramm. Remote Sens. 56, 121–138 (2001)

35.Cobby, D.M., et al.: Two-dimensional hydraulic flood modeling using a finite-element mesh decomposed according to vegetation and topographic features derived from airborne scanning laser altimetry. Hydrol. Process. 17(10), 1979–2000 (2002)

36.Costantini, M.: A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 36(3), 813–821 (1998)

37.Costantini, M., Farina, A., Zirilli, F.: A fast phase unwrapping algorithm for SAR interferometry. IEEE Trans. Geosci. Remote Sens. 37(1), 452–460 (1999)

38.Crosetto, M.: Calibration and validation of SAR interferometry for DEM generation. ISPRS

J.Photogramm. Remote Sens. 57, 213–227 (2002)

39.Davenport, I.J., et al.: Improving bird population models using airborne remote sensing. Int.

J.Remote Sens. 21(13 & 14), 2705–2717 (2000)

40.Duda, R.O., Stork, D.G.: Pattern Classification. Wiley, New York (2001)

41.Faugeras, O.: Three-Dimensional Computer Vision—A Geometric Viewpoint. MIT Press, Cambridge (1993)

42.Ferraioli, G., et al.: Multichannel phase unwrapping with graph cuts. IEEE Geosci. Remote Sens. Lett. 6(3), 562–566 (2009)

43.Flood, M.: LIDAR activities and research priorities in the commercial sector. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXIV(3/W4), 3–7 (2001)

44.Fornaro, G., Franceschetti, G., Lanari, R.: Interferometric SAR phase unwrapping using green’s formulation. IEEE Trans. Geosci. Remote Sens. 34(3), 720–727 (1996)

45.Förstner, W.: On the geometric precision of digital correlation. Int. Arch. Photogramm. 24(III), 176–189 (1982). Helsinki

46.Förstner, W., Gulch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Inter-commission Conference on Fast Processing of Photogrammetric Data, Interlaken, Switzerland, pp. 281–305 (1987)

47.Fraile, R., Maybank, S.: Comparing probabilistic and geometric models on LIDAR data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 34(3/W4), 67–70 (2001)

48.Fraser, C.S.: High-resolution satellite imagery: a review of metric aspects. In: International Archives of Photogrammetry and Remote Sensing, XXXIII, Part B7, Amsterdam (2000)

49.Fried, D.L.: Least-squares fitting a wave-front distortion estimate to an array of phasedifference measurements. J. Opt. Soc. Am. 67, 370–375 (1977)

50.Friess, P.: Toward a rigorous methodology airborne laser mapping. In: ISPRS International Calibration and Orientation Workshop (EuroCOW 2006), I (2006). 7 pages

410

H. Wei and M. Bartels

51.Gabet, L., Giraudon, G., Renouard, L.: Automatic generation of high resolution urban zone digital elevation models. ISPRS J. Photogramm. Remote Sens. 52(1), 33–47 (1997)

52.Galiatsatos, N., Donoghue, D.N.M., Philip, G.: High resolution elevation data derived from stereoscopic CORONA imagery with minimal ground control: an approach using ikonos and SRTM data. Photogramm. Eng. Remote Sens. 74(9), 1093–1106 (2008)

53.Ghiglia, D.C., Romero, L.A.: Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. J. Opt. Soc. Am. 11(1), 107–117 (1994)

54.Goldstein, R.M., Zebker, H.A., Werner, C.L.: Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci. 23(4), 713–720 (1988)

55.Gomes Pereira, L.M., Janssen, L.L.F.: Suitability of laser data for DTM generation: a case study in the context of road planning and design. ISPRS J. Photogramm. Remote Sens. 54, 244–253 (1999)

56.Graham, L.C.: Synthetic interferometric radar for topographic mapping. Proc. IEEE 62(6), 763–768 (1974)

57.Gruen, A.W.: Adaptive least squares correlation: a powerful image matching technique.

J.Photogramm. Remote Sens. Cartography 14(3), 175–185 (1985)

58.Gwinner, K., et al.: Topography of mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: characteristics and performance. Earth Planet. Sci. Lett. 294(3–4), 506–519 (2010)

59.Haala, N., Brenner, C.: Generation of 3D city models from airborne laser scanning data. In: Proceedings of EARSEL Workshop on LIDAR Remote Sensing of Land and Sea, pp. 105– 112 (1997)

60.Haala, N., Brenner, C.: Fast production of virtual reality city models. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 32(4), 77–84 (1998)

61.Haala, N., Brenner, C.: Extraction of buildings and trees in urban environments. ISPRS J. Photogramm. Remote Sens. 54, 130–137 (1999)

62.Haala, N., Brenner, C., Anders, K.-H.: 3D urban GIS from laser altimeter and 2D map data. ISPRS Congress Commission III, Working Group 4(32(3/1)), 339–346 (1998)

63.Haala, N., Brenner, C., Staetter, C.: An integrated system for urban model generation. Proceedings ISPRS Congress Commission II, Working Group 6, 96–103 (1998)

64.Habib, A., et al.: DEM generation from high resolution satellite imagery using parallel projection model. In: ISPRS Congress, Istanbul (2004)

65.Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision, vol. I. Addison-Wesley, Reading (1992)

66.Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 9(4), 532–550 (1987)

67.Hasegawa, H., et al.: DEM accuracy and the base to height (B/H) ratio of stereo images. In: International Archives of Photogrammetry and Remote Sensing, XXXIII, Part B4, Amsterdam (2000)

68.Hashimoto, T.: DEM generation from stereo AVNIR images. Adv. Space Res. 25(5), 931– 936 (2000)

69.Heipke, C.: Automation of interior, relative, and absolute orientation. ISPRS J. Photogramm. Remote Sens. 52(1), 1–19 (1997)

70.Hellwich, O.: Basic principles and current issues of SAR interferometry. In: ISPRS Workshop, Commission I, Working Group I/3, Hannover, Germany (1999)

71.Hellwich, O., Ebner, H.: Geocoding SAR interferograms by least squares adjustment. ISPRS

J.Photogramm. Remote Sens. 55(4), 277–288 (2000)

72.Henssen, R.F.: Radar interferometry: data interpretation and error analysis. In: Meer, F.V.D. (ed.) Remote Sensing and Digital Image Processing, vol. 2. Kluwer Academic, London (2001)

73.Hirano, A., Welch, R., Lang, H.: Mapping from ASTER stereo image data: DEM validation and accuracy assessment. ISPRS J. Photogramm. Remote Sens. 57(5–6), 356–370 (2003)

9 3D Digital Elevation Model Generation

411

74.Hodgson, M.E., Bresnahan, P.: Accuracy of airborne LIDAR-derived elevation: empirical assessment and error budget. Photogramm. Eng. Remote Sens. 70(3), 331–339 (2004)

75.Hodgson, M.E., et al.: An evaluation of LIDAR-derived elevation and terrain slope in leaf-off conditions. Photogramm. Eng. Remote Sens. 71(7), 817–823 (2005)

76.Hofmann, A.D., Maas, H.-G., Streilein, A.: Knowledge-based building detection based on laser scanner data and topographic map information. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 34(3A), 169–174 (2002)

77.Hogan, R.J., et al.: Characteristics of mixed-phase clouds. I: LIDAR, radar and aircraft observations from CLARE98. Q. J. R. Meteorol. Soc. 129(592), 2089–2116 (2003)

78.Huising, E.J., Gomes Pereira, L.M.: Errors and accuracy estimates of laser data acquired by various laser scanning systems for topographic applications. ISPRS J. Photogramm. Remote Sens. 53, 245–261 (1998)

79.Hunt, B.R.: Matrix formulation of the reconstruction of phase values from phase differences. J. Opt. Soc. Am. 69, 393–399 (1979)

80.Hutchinson, M.F.: Development of a continent-wide DEM with applications to terrain and climate analysis. In: Goodchild, M.F., et al. (eds.) Environmental Modeling with GIS. Oxford University Press, Oxford (1993)

81.Hyyppä, H., et al.: Factors affecting the quality of DTM generation in forested areas. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(3/W19), 85–90 (2005)

82.Jacobsen, K.: DEM generation from satellite data. In: Remote Sensing in Transition—23rd EARSeL Symposium, Ghent, Belgium (2003)

83.Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1) (2000)

84.James, T.D., et al.: Extracting photogrammetric ground control from LIDAR DEMs for change detection. Photogramm. Rec. 21(116), 312–328 (2006)

85.Jet Propulsion Laboratory: ASTER Global Digital Elevation Map Announcement. http://asterweb.jpl.nasa.gov/gdem.asp (2009)

86.Jong-Sen, L., et al.: A new technique for noise filtering of SAR interferometric phase images. IEEE Trans. Geosci. Remote Sens. 36(5), 1456–1465 (1998)

87.Kanade, T., Okutomi, M.: A stereo matching algorithm with an adaptive window: theory and experiment. IEEE Trans. Pattern Anal. Mach. Intell. 16(9), 920–932 (1994)

88.Kervyn, F.: Modeling topography with SAR interferometry: illustrations of a favourable and less favourable environment. Comput. Geosci. 27(9), 1039–1050 (2001)

89.Kidner, D.B., et al.: Coastal monitoring with LIDAR: challenges, problems, and pitfalls. Proc. SPIE 5574, 80–89 (2004)

90.Kilian, J., Haala, N., Englich, M.: Capture and evaluation of airborne laser data. Int. Arch. Photogramm. Remote Sens. 31(3), 383–388 (1996)

91.Kobler, A., et al.: Repetitive interpolation: a robust algorithm for DTM generation from aerial laser scanner data in forested terrain. Remote Sens. Environ. 108(1), 9–23 (2007)

92.Kornus, W., et al.: DEM generation from SPOT-5 3-fold along track stereoscopic imagery using autocalibration. ISPRS J. Photogramm. Remote Sens. 60(3), 147–159 (2006)

93.Kraus, K., Pfeifer, N.: Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J. Photogramm. Remote Sens. 53, 193–203 (1998)

94.Kraus, K., Pfeifer, N.: Advanced DTM generation from LIDAR data. ISPRS J. Photogramm. Remote Sens. 53, 193–203 (2001)

95.Krieger, G., et al.: TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE Trans. Geosci. Remote Sens. 45(11), 3317–3341 (2007)

96.Krzystek, P.: Filtering of laser scanning data in forest areas using finite elements. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXIV(3/W13) (2003). 6 pages

97.Lanari, R., et al.: Generation of digital elevation models by using SIR-C/X-SAR multifrequency two-pass interferometry: the Etna case study. IEEE Trans. Geosci. Remote Sens. 34(5), 1097–1114 (1996)

98.Lee, H.-Y., et al.: Extraction of digital elevation models from satellite stereo images through stereo matching based on epipolarity and scene geometry. Image Vis. Comput. 21(9), 789– 796 (2003)

412

H. Wei and M. Bartels

99.Li, H., Liao, G.: An estimation method for InSAR interferometric phase based on MMSE criterion. IEEE Trans. Geosci. Remote Sens. 48(3), 1457–1469 (2010)

100.Li, J., et al.: The research and design of the base-height ratio for the three linear array camera of satellite photogrammetry. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII, Part B1, Beijing (2008)

101.Lillesand, T.M., Kiefer, R.W., Chipman, J.W.: Remote Sensing and Image Interpretation. Wiley, New York (2004)

102.Lin, Q., Vesecky, J.F., Zebker, H.A.: New approaches in interferometric SAR data processing. IEEE Trans. Geosci. Remote Sens. 30(3), 560–567 (1992)

103.Loffeld, O., et al.: Phase unwrapping for SAR interferometry—a data fusion approach by Kalman filtering. IEEE Trans. Geosci. Remote Sens. 46(1), 47–58 (2008)

104.Löffler, G.: Aspects of raster DEM data derived from laser measurements. Int. Arch. Photogramm. Remote Sen. Spatial Inf. Sci. XXXIV(3/W13) (2003). 5 pages

105.Lohr, U.: Laserscan DEM for various applications. In: Fritsch, M.E.D., Sester, M. (eds.) ISPRS Commission IV Symposium on GIS—Between Visions and Applications, vol. 32/4 (1998)

106.Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

107.Luethya, J., Stengele, R.: 3D mapping of Switzerland—challenges and experiences. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(3/W19), 42–47 (2005)

108.Maas, H.-G.: Akquisition von 3D-GIS Daten durch Flugzeuglaserscanning. Kartogr. Nachr. 55(1), 3–11 (2005)

109.Marr, D., Poggio, T.: A computational theory of human stereo vision. Proc. R. Soc. Lond., Ser. B 204(1156), 301–328 (1979)

110.Martinez-Espla, J.J., Martinez-Marin, T., Lopez-Sanchez, J.M.: A particle filter approach for InSAR phase filtering and unwrapping. IEEE Trans. Geosci. Remote Sens. 47(4), 1197–1211 (2009)

111.Mason, D.C., Scott, T.R., Wang, H.-J.: Extraction of tidal channel networks from airborne scanning laser altimetry. ISPRS J. Photogramm. Remote Sens. 61(2), 67–83 (2006)

112.Massonnet, D., Rabaute, T.: Radar interferometry: limits and potential. IEEE Trans. Geosci. Remote Sens. 31(2), 455–464 (1993)

113.Mora, O., et al.: Generation of accurate DEMs using DInSAR methodology (TopoDInSAR). IEEE Geosci. Remote Sens. Lett. 3(4), 551–554 (2006)

114.Nardinocchi, C., Forlani, G., Zingaretti, P.: Classification and filtering of laser data. Int. Arch. Photogramm. Remote Sen. Spatial Inf. Sci. XXXIV(3/W13) (2003). 8 pages

115.Oliver, C., Quegan, S.: Understanding Synthetic Aperture Radar Images. Artech House, London (1998)

116.O’Neill, M., Denos, M.: Automated system for coarse-to-fine pyramidal area correlation stereo matching. Image Vis. Comput. 14(3), 225–236 (1996)

117.Otto, G.P., Chau, T.K.W.: Region-growing algorithm for matching of terrain images. Image Vis. Comput. 7(2), 83–94 (1989)

118.Oude Elberink, S., Maas, H.-G.: The use of anisotropic height texture measures for the segmentation of laser scanner data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXIII(B3), 678–684 (2000)

119.Pertl, A.: Digital image correlation with the analytical plotter PLANICOMP C-100. In: Int. Archives of Photogrammetry and Remote Sensing, XXV, A3b, Commission III, Rio de Janeiro (1984)

120.Pfeifer, N., Stadler, P., Briese, C.: Derivation of digital terrain models in the SCOP++ environment. In: Proceedings of OEEPE Workshop on Airborne Laserscanning and Interferometric SAR for Detailed Digital Terrain Models (2001)

121.Pritt, M.D., Shipman, J.S.: Least-squares two-dimensional phase unwrapping using FFT’s. IEEE Trans. Geosci. Remote Sens. 32(3), 706–708 (1994)

9 3D Digital Elevation Model Generation

413

122.Raber, G.T., et al.: Creation of digital terrain models using an adaptive LIDAR vegetation point removal process. Photogramm. Eng. Remote Sens. 68(12), 1307–1315 (2002)

123.Rabus, B., et al.: The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 57(4), 241–262 (2003)

124.Raney, R.K., et al.: Precision SAR processing using chirp scaling. IEEE Trans. Geosci. Remote Sens. 32(4), 786–799 (1994)

125.Reinartz, P., et al.: Accuracy analysis for DSM and orthoimages derived from SPOT HRS stereo data using direct georeferencing. ISPRS J. Photogramm. Remote Sens. 60(3), 160– 169 (2006)

126.Rodriguez, E., Martin, J.M.: Theory and design of interferometric synthetic aperture radars. IEE Proc., F, Radar Signal Process. 139(2), 147–159 (1992)

127.Rogers, A.E.E., Ingalls, R.P.: Venus: mapping the surface reflectivity by radar interferometry. Science 165, 797–799 (1969)

128.Roggero, M.: Airborne laser scanning: clustering in raw data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 34(3/W4), 227–232 (2001)

129.Rosen, P.A., et al.: Synthetic aperture radar interferometry. Proc. IEEE 88(3), 333–382 (2000)

130.Rosenfeld, A.: Image analysis: problems, progress and prospects. Pattern Recognit. 17(1), 3–12 (1984)

131.Rottensteiner, F., Briese, C.: Automatic generation of building models from LIDAR data and the integration of aerial images. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. ISPRS 34(3/W13), 174–180 (2003)

132.Rottensteiner, F., et al.: Building detection by fusion of airborne laser scanner data and multispectral images: performance evaluation and sensitivity analysis. ISPRS J. Photogramm. Remote Sens. 62, 135–149 (2007)

133.Rottensteiner, F., et al.: Using the Dempster-Shafer method for the fusion of LIDAR data and multi-spectral images for building detection. Inf. Fusion 6, 283–300 (2005)

134.Rottensteiner, F., et al.: Automated delineation of roof planes from LIDAR data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(3/W19), 42–47 (2005)

135.Rufino, G., Moccia, A., Esposito, S.: DEM generation by means of ERS tandem data. IEEE Trans. Geosci. Remote Sens. 36(6), 1905–1912 (1998)

136.Schenk, T., Csathó, B.: Fusion of LIDAR data and aerial imagery for a more complete surface description. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXIV(3A/B), 310–317 (2002)

137.Schenk, T., Seo, S., Csathó, B.: Accuracy study of airborne laser scanning data with photogrammetry. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXIV(3/W4), 113– 118 (2001)

138.Schnadt, K., Katzenbeißer, R.: Unique airborne fiber scanner technique for applicationoriented LIDAR products. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(8/W2), 19–23 (2004)

139.Silván-Cárdenas, J.L., Wang, L.: A multi-resolution approach for filtering LIDAR altimetry data. ISPRS J. Photogramm. Remote Sens. 61, 11–22 (2006)

140.Silván-Cárdenas, J.L., Wang, L.: The multiscale Hermite transform for local orientation analysis. IEEE Trans. Image Process. 15(5), 1236–1253 (2006)

141.Silván-Cárdenas, J.L., Wang, L.: Multiscale-based filtering of LIDAR altimetry data. MAPPS/ASPRS, I (2006). 6 pages

142.Sithole, G.: Filtering of laser altimetry data using a slope adaptive filter. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXIV(3/W4), 203–210 (2001)

143.Sithole, G., Vosselman, G.: Experimental comparison of filter algorithms for bare-earth extraction from airborne laser scanning point clouds. ISPRS J. Photogramm. Remote Sens. 59(1–2), 85–101 (2004)

144.Sohn, G.: Extraction of buildings from high-resolution satellite data and LIDAR. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXV(7), 1036–1042 (2004)

414

H. Wei and M. Bartels

145.Sohn, G., Dowman, I.: Terrain surface reconstruction by the use of tetrahedron model with the MDL criterion. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXIV(3A), 336–344 (2002)

146.Tarsha-Kurdi, F., et al.: New approach for automatic detection of buildings in airborne laser scanner. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(3), 25–30 (2006)

147.Toutin, T.: Error tracking in ikonos geometric processing using a 3D parametric model. Photogramm. Eng. Remote Sens. 69(1), 43–51 (2003)

148.Toutin, T.: Spatiotriangulation with multisensor VIR/SAR images. IEEE Trans. Geosci. Remote Sens. 42(10), 2096–2103 (2004)

149.Toutin, T.: Comparison of stereo-extracted DTM from different high-resolution sensors: SPOT-5, EROS-A, IKONOS-II, and QuickBird. IEEE Trans. Geosci. Remote Sens. 42(10), 2121–2129 (2004)

150.Toutin, T.: Generation of DSMs from SPOT-5 in-track HRS and across-track HRG stereo data using spatiotriangulation and autocalibration. ISPRS J. Photogramm. Remote Sens. 60(3), 170–181 (2006)

151.Toutin, T., Gray, L.: State-of-the-art of elevation extraction from satellite SAR data. ISPRS J. Photogramm. Remote Sens. 55(1), 13–33 (2000)

152.Viñas, O., et al.: Combined use of LIDAR and QuickBird data for the generation of land use maps. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(7), 155–159 (2006)

153.von Hansen, W., Vögtle, T.: Extraktion der geländeoberfläche aus flugzeuggetragenen Laserscanner-Aufnahmen. Photogramm. Fernerkund. Geoinf. (PFG) 4, 229–236 (1999)

154.Vosselman, G.: Building reconstruction using planar faces in very high density height data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 32(3/2W5), 87–92 (1999)

155.Vosselman, G.: Slope based filtering of laser altimetry data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 33(B3/2), 935–942 (2000)

156.Vosselman, G., Dijkman, S.: 3D building model reconstruction from point clouds and ground plans. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXIV(3/W4), 37–43 (2001)

157.Vosselman, G., Suveg, I.: Map based building reconstruction from laser data and images. Proc. Autom. Extract. Man-Made Obj. Aerial Space Images 32(3/2W5), 231–239 (2001)

158.Vu, T.T., Tokunaga, M.: Wavelet and scale-space theory in segmentation of airborne laser scanner data. In: Proc. 22nd Asian Conference on Remote Sensing, I (2001). 5 pages

159.Vu, T.T., Tokunaga, M.: Wavelet-based clustering method to detect building in urban area from airborne laser scanner data. In: MapAsia 2002, I (2002). 2 pages

160.Vu, T.T., Tokunaga, M.: Wavelet-based filtering the cloud points derived from airborne laser scanner. In: Proceeding of the 23rd Asian Conference on Remote Sensing, I (2002). 2 pages

161.Vu, T.T., et al.: Wavelet-based system for classification of airborne laser scanner data. In: IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2003, vol. 7, pp. 4404–4406 (2003)

162.Vu, T.T., Tokunaga, M., Yamazaki, F.: In: LIDAR signatures to update Japanese building inventory database. 25th Asian Conference on Remote Sensing, I (2004). 6 pages

163.Wack, R., Stelzl, H.: Laser DTM generation for South-Tyrol and 3D-visualization. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(3/W19), 48–53 (2005)

164.Wack, R., Wimmer, A.: Digital terrain models from airborne laser scanner data—a grid based approach. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 34(3B), 293–296 (2002)

165.Wang, Y.: Principles and applications of structural image matching. ISPRS J. Photogramm. Remote Sens. 53(3), 154–165 (1998)

166.Weed, C.A., et al.: Classification of LIDAR data using a lower envelope follower and gradient-based operator. IEEE International Geoscience and Remote Sensing Symposium 3, 1384–1386 (2002)

167.Wehr, A., Lohr, U.: Airborne laser scanning—an introduction and overview. ISPRS J. Photogramm. Remote Sens. 54, 68–82 (1999)

168.Wei, H., Bartels, M.: Unsupervized segmentation using Gabor wavelets and statistical features in LIDAR data analysis. In: Proceedings of 18th International Conference on Pattern Recognition, I, pp. 667–670 (2006)

9 3D Digital Elevation Model Generation

415

169.Weidner, U.: An approach to building extraction from digital surface models. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 31(B3), 924–929 (1996)

170.Weidner, U.: Digital Surface Models for Building Extraction. Automatic Extraction of ManMade Objects from Aerial and Space Images (II). Birkhäuser, Basel (1997). A. Grün (ed.)

171.Weidner, U.: Analysis and comparison of different high-resolution data sets for urban applications. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(7), 750–755 (2006)

172.Weidner, U., Förstner, W.: Towards automatic building extraction from high resolution digital elevation models. ISPRS J. Photogramm. Remote Sens. 50(4), 38–49 (1995)

173.Wu, N., Feng, D.-Z., Li, J.: A locally adaptive filter of interferometric phase images. IEEE Geosci. Remote Sens. Lett. 3(1), 73–77 (2006)

174.Xu, W., Cumming, I.: A region-growing algorithm for InSAR phase unwrapping. IEEE Trans. Geosci. Remote Sens. 37(1), 124–134 (1999)

175.Yao, W., Hinz, S., Stilla, U.: Automatic vehicle extraction from airborne LIDAR data of urban areas using morphological reconstruction. In: Proceedings of 5th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS 2008) (2008). 4 pages

176.Yamaki, R., Hirose, A.: Singular unit restoration in interferograms based on complex-valued Markov random field model for phase unwrapping. IEEE Geosci. Remote Sens. Lett. 6(1), 18–22 (2009)

177.Yu, H., Li, Z., Bao, Z.: A cluster-analysis-based efficient multibaseline phase-unwrapping algorithm. IEEE Trans. Geosci. Remote Sens. 49(1), 478–487 (2011)

178.Yu, Q., et al.: An adaptive contoured window filter for interferometric synthetic aperture radar. IEEE Geosci. Remote Sens. Lett. 4(1), 23–26 (2007)

179.Yu, X., et al.: Applicability of first pulse derived digital terrain models for Boreal forest studies. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XXXVI(3/W19), 97–102 (2005)

180.Zebker, H.A., et al.: The TOPSAR interferometric radar topographic mapping instrument. IEEE Trans. Geosci. Remote Sens. 30(5), 933–940 (1992)

181.Zhang, K., et al.: A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE Trans. Geosci. Remote Sens. 41(4), 872–882 (2003)

182.Zhang, L., Gruen, A.: Multi-image matching for DSM generation from IKONOS imagery. ISPRS J. Photogramm. Remote Sens. 60(3), 195–211 (2006)

183.Zhang, Z., et al.: A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artif. Intell. 78(1–2), 87–119 (1995)

184.Zisk, S.H.: A new Earth-based radar technique for the measurement of lunar topography. Moon 4, 296–300 (1972)

185.Zitová, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)