Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
[2.1] 3D Imaging, Analysis and Applications-Springer-Verlag London (2012).pdf
Скачиваний:
12
Добавлен:
11.12.2021
Размер:
12.61 Mб
Скачать

Contents

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

 

Reinhard Koch, Nick Pears, and Yonghuai Liu

 

Part I 3D Imaging and Shape Representation

2 Passive 3D Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Stephen Se and Nick Pears

3

Active 3D Imaging Systems . . . . . . . . . . . . . . . . . . . . . . .

95

 

Marc-Antoine Drouin and Jean-Angelo Beraldin

 

4

Representing, Storing and Visualizing 3D Data . . . . . . . . . . . .

139

 

William A.P. Smith

 

Part II 3D Shape Analysis and Processing

5 Feature-Based Methods in 3D Shape Analysis . . . . . . . . . . . . . 185 Alexander M. Bronstein, Michael M. Bronstein, and Maks Ovsjanikov

6

3D

Shape Registration . . . . . . . . . . . . . . . . . . . . . . . . . .

221

 

Umberto Castellani and Adrien Bartoli

 

7

3D

Shape Matching for Retrieval and Recognition . . . . . . . . . .

265

 

Benjamin Bustos and Ivan Sipiran

 

Part III 3D Imaging Applications

8 3D Face Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 Ajmal Mian and Nick Pears

9 3D Digital Elevation Model Generation . . . . . . . . . . . . . . . . . 367 Hong Wei and Marc Bartels

xiii

xiv

 

Contents

10

High-Resolution Three-Dimensional Remote Sensing for Forest

 

 

Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . 417

 

Hans-Erik Andersen

 

11

3D Medical Imaging . . . . . . . . . . . . . . . . . . . . . . . . . .

. 445

 

Philip G. Batchelor, P.J. “Eddie” Edwards, and Andrew P. King

 

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 497

Contributors

Hans-Erik Andersen United States Department of Agriculture Forest Service, Pacific Northwest Research Station, Seattle, WA, USA

Marc Bartels Computational Vision Group, School of Systems Engineering, University of Reading, Reading, UK

Adrien Bartoli Université d’Auvergne, Clermont-Ferrand, France

Philip G. Batchelor King’s College, London, UK

Jean-Angelo Beraldin National Research Council of Canada, Ottawa, Ontario,

Canada

Alexander M. Bronstein Department of Computer Science, Technion—Israel Institute of Technology, Haifa, Israel

Michael M. Bronstein Department of Computer Science, Technion—Israel Institute of Technology, Haifa, Israel

Benjamin Bustos Department of Computer Science, University of Chile, Santiago,

Chile

Umberto Castellani University of Verona, Verona, Italy

Marc-Antoine Drouin National Research Council of Canada, Ottawa, Ontario,

Canada

Andrew P. King King’s College, London, UK

Reinhard Koch Institute of Computer Science, Christian-Albrechts-University of Kiel, Kiel, Germany

Yonghuai Liu Department of Computer Science, Aberystwyth University, Aberystwyth, Ceredigion, UK

Ajmal Mian School of Computer Science and Software Engineering, University of Western Australia, Crawley, WA, Australia

xv

xvi Contributors

Maks Ovsjanikov Department of Computer Science, Stanford University, Stanford, CA, USA

Nick Pears Department of Computer Science, University of York, York, UK

Stephen Se MDA Systems Ltd., Richmond, BC, Canada

Ivan Sipiran Department of Computer Science, University of Chile, Santiago,

Chile

William A.P. Smith Department of Computer Science, University of York, York, UK

Hong Wei Computational Vision Group, School of Systems Engineering, University of Reading, Reading, UK

P.J. “Eddie” Edwards Imperial College, London, UK

Part I

3D Imaging and Shape Representation

In this part, we discuss 3D imaging using both passive techniques (Chap. 2) and active techniques (Chap. 3). The former uses ambient illumination (i.e. sunlight or standard room lighting), whilst the latter projects its own illumination (usually visible or infra-red) onto the scene. Both chapters place an emphasis on techniques that employ the geometry of range triangulation, which requires cameras and/or projector stationed at two (or more) viewpoints. Chapter 4 discusses how to represent the captured data, both for efficient algorithmic 3D data processing and efficient data storage. This provides a bridge to the following part of the book, which deals with 3D shape analysis and processing.