Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

n29fIAwxpY

.pdf
Скачиваний:
2
Добавлен:
15.04.2023
Размер:
18.9 Mб
Скачать

Tab. 3.12. The results of the Ole 12 sample microanalysis

Sample

C

N

O

F

Na

Mg

Al

Si

P

S

K

Ca

Fe

Tb

Ir

Ole12(1)pt1

15.27

 

50.77

0.46

0.48

0.54

1.07

25.55

0.73

 

 

5.13

 

 

 

Ole12(1)pt2

20.14

4.28

48.77

 

0.42

0.68

1.38

17.50

1.09

 

 

5.76

 

 

 

Ole12(1)pt3

31.86

8.77

34.78

 

 

 

1.22

15.49

2.43

0.66

1.17

3.61

 

 

 

Ole12(1)pt4

14.41

 

33.80

 

 

0.91

1.11

12.45

 

 

 

2.29

35.04

 

 

Ole12(1)pt5

29.54

10.67

41.43

0.29

0.56

1.12

1.07

12.15

 

 

 

3.17

 

 

 

Ole12(1)pt6

12.46

 

53.03

0.43

 

1.31

1.97

16.52

 

 

0.70

13.58

 

 

 

Ole12(1)pt7

9.73

 

49.72

 

 

0.57

 

32.28

 

 

 

3.53

 

 

4.17

Ole12(1)pt8

18.94

 

52.21

1.51

 

0.47

0.93

22.49

 

 

 

3.44

 

 

 

Ole12(1)pt9

26.68

 

47.13

0.89

 

0.78

0.88

12.58

3.39

 

 

7.68

 

 

 

Ole12(1)pt10

10.58

 

40.57

0.47

0.42

 

0.97

13.37

 

2.23

 

5.33

26.06

 

 

Ole12(1)pt11

15.24

 

48.83

 

0.34

0.87

1.59

19.55

2.26

 

 

11.33

 

 

 

Ole12(1)pt12

17.65

 

49.81

 

 

0.57

0.70

17.33

2.67

0.82

 

10.45

 

 

 

Ole12(1)pt13

15.57

 

49.03

0.59

 

1.33

1.47

21.94

1.69

 

 

8.38

 

 

 

Ole12(1)pt14

21.98

 

40.99

 

 

0.71

0.85

23.08

2.39

0.85

 

9.14

 

 

 

Ole12(1)pt15

28.45

7.22

38.65

 

 

1.25

0.75

14.35

1.09

0.93

 

7.32

 

 

 

Ole12(1)pt16

24.78

8.37

35.22

 

 

1.10

0.94

17.63

2.31

 

 

9.65

 

 

 

Ole12(1)pt17

13.92

 

42.96

0.22

 

0.99

1.75

29.28

 

 

 

10.88

 

 

 

Ole12(1)pt18

12.71

 

38.38

 

 

 

1.31

11.77

 

 

 

12.84

 

22.99

 

Ole12(1)pt19

13.44

 

45.89

 

 

10.63

2.45

16.12

 

 

 

11.47

 

 

 

Ole12(1)pt20

13.79

 

51.14

1.44

 

1.87

1.93

20.49

1.70

 

0.79

6.86

 

 

 

Ole12(1)pt21

14.82

 

48.42

0.57

 

1.05

0.79

20.87

2.95

 

 

10.52

 

 

 

Ole12(1)pt22

18.54

3.93

46.23

 

 

0.59

0.50

19.65

 

 

 

6.07

 

 

4.50

Ole12(1)pt23

8.91

 

55.44

0.00

 

0.41

1.23

28.52

 

0.68

 

4.82

 

 

 

Ole12(1)pt24

11.25

 

51.98

0.54

1.30

0.48

4.66

22.57

1.20

 

 

6.01

 

 

 

Ole12(1)pt25

17.36

 

44.67

0.29

 

0.57

1.04

31.55

 

 

 

4.51

 

 

 

Tab. 3.13. The results of the Ole 13 sample microanalysis

Sample

C

O

F

Na

Mg

Al

Si

S

K

Ca

Fe

Br

Ole13(1)pt1

1.74

28.98

 

 

 

1.42

5.12

 

 

1.61

61.13

 

Ole13(1)pt2

2.00

28.18

 

 

0.13

1.02

3.75

1.52

 

1.76

61.64

 

Ole13(1)pt3

1.94

28.31

 

 

 

1.68

3.86

1.78

0.86

2.53

59.05

 

Ole13(1)pt4

3.39

50.12

2.88

 

4.01

7.45

19.42

2.69

6.07

3.97

 

 

Ole13(1)pt5

1.90

28.63

 

 

0.85

1.81

4.81

1.45

0.91

2.55

57.11

 

Ole13(1)pt6

1.97

35.94

 

 

3.72

2.56

9.48

2.53

 

4.98

38.83

 

Ole13(1)pt7

6.44

51.33

 

 

0.80

1.44

3.30

2.97

 

33.72

 

 

Ole13(1)pt8

1.91

33.70

 

0.67

 

 

4.32

4.87

 

5.37

45.98

3.18

Ole13(1)pt9

4.69

40.88

 

 

0.82

2.61

39.95

3.95

 

7.09

 

 

Ole13(1)pt10

3.24

41.90

 

0.42

4.59

7.82

14.20

1.47

2.34

2.88

21.14

 

Ole13(1)pt11

2.53

31.63

 

 

0.70

1.18

3.28

2.66

 

3.11

54.92

 

Ole13(1)pt12

2.87

53.71

0.08

 

1.36

1.31

6.17

15.12

 

19.37

 

 

Ole13(1)pt13

7.56

52.35

2.15

1.20

1.90

4.12

9.25

8.97

 

12.52

 

 

Ole13(1)pt14

5.63

38.90

 

 

3.64

7.66

17.89

3.87

8.48

7.37

6.57

 

Ole13(1)pt15

2.57

47.34

 

 

8.19

9.00

12.21

1.88

 

3.86

14.95

 

Ole13(1)pt16

6.97

53.03

 

 

 

6.10

13.87

7.61

 

12.43

 

 

Ole13(1)pt17

2.36

53.90

 

1.01

1.01

4.02

8.83

11.77

1.29

15.80

 

 

Ole13(1)pt18

2.27

46.23

1.02

0.81

0.72

2.46

6.31

15.16

1.17

23.86

 

 

Ole13(1)pt19

2.50

40.06

 

0.58

1.38

3.44

13.15

9.37

6.20

15.57

7.75

 

Ole13(1)pt20

3.55

46.21

1.04

1.58

3.10

5.05

28.06

3.50

2.86

5.04

 

 

Ole13(1)pt21

2.88

46.40

 

1.56

1.24

7.00

15.30

5.69

 

15.78

4.16

 

Ole13(1)pt22

3.14

48.30

3.50

 

0.93

2.56

7.61

13.00

 

20.94

 

 

Ole13(1)pt23

2.12

46.43

1.38

 

1.87

2.81

12.11

13.76

2.16

17.35

 

 

Ole13(1)pt24

4.27

48.40

 

0.85

 

 

12.57

9.64

 

15.40

 

8.86

Ole13(1)pt25

2.81

47.72

0.00

 

1.45

5.68

11.88

11.43

1.49

17.54

 

 

Ole13(1)pt26

7.66

50.86

 

2.31

 

5.71

16.04

8.27

 

9.15

 

 

91

Tab. 3.14. The results of the Ole 14 sample microanalysis

Sample

C

N

O

F

Na

Mg

Al

Si

P

S

K

Ca

Fe

Br

Ole14(1)pt1

3.16

 

30.20

 

0.59

0.97

 

5.64

 

 

 

 

55.12

4.34

Ole14(1)pt2

3.57

 

51.85

0.79

0.68

1.69

3.97

33.62

 

 

1.98

1.85

 

 

Ole14(1)pt3

5.13

 

41.55

 

1.18

3.68

8.13

19.40

 

 

2.69

3.67

14.57

 

Ole14(1)pt4

2.93

 

41.43

 

0.57

7.10

8.80

16.80

 

 

5.46

 

16.90

 

Ole14(1)pt5

2.85

 

40.11

 

0.80

6.53

7.92

18.97

 

 

4.89

1.80

16.13

 

Ole14(1)pt6

2.54

 

34.55

 

1.23

1.25

2.43

7.30

1.23

2.00

1.02

2.85

43.60

 

Ole14(1)pt7

3.03

 

32.28

 

0.95

1.58

3.30

8.96

 

 

1.68

2.65

45.59

 

Ole14(1)pt8

3.15

 

46.62

2.28

1.94

0.89

 

11.44

7.79

 

0.80

16.12

 

8.97

Ole14(1)pt9

6.17

 

41.13

 

 

2.60

7.33

22.38

 

 

5.85

4.25

10.30

 

Ole14(1)pt10

4.43

 

47.77

 

5.07

1.18

9.22

23.86

 

 

1.18

3.02

4.26

 

Ole14(1)pt11

2.45

 

28.13

 

1.19

0.83

1.98

6.24

 

 

0.70

1.45

57.02

 

Ole14(1)pt12

2.90

 

40.47

 

 

2.53

5.37

36.20

 

 

4.57

3.49

4.46

 

Ole14(1)pt13

3.31

1.68

43.01

 

1.14

5.13

5.30

17.75

 

 

1.49

5.62

15.56

 

Ole14(1)pt14

4.06

 

38.54

 

 

2.02

5.84

14.33

 

 

1.97

4.63

28.62

 

Ole14(1)pt15

3.37

 

39.13

 

 

1.77

4.69

25.06

 

 

3.64

4.32

18.02

 

Ole14(1)pt16

2.32

 

30.34

 

 

1.32

2.65

6.10

 

 

 

 

57.27

 

Ole14(1)pt17

4.02

 

36.67

 

 

2.55

5.84

12.72

 

 

1.81

7.45

28.94

 

Ole14(1)pt18

2.59

 

31.42

 

 

1.35

2.80

8.19

 

 

 

1.60

52.05

 

Ole14(1)pt19

4.45

 

43.65

 

3.85

1.13

7.72

19.67

 

 

1.34

4.94

13.26

 

Ole14(1)pt20

7.77

 

42.83

 

1.72

2.96

8.58

23.31

 

 

3.05

4.68

5.10

 

Ole14(1)pt21

10.26

 

44.88

1.19

1.86

2.94

7.60

22.06

 

 

2.52

6.69

 

 

Ole14(1)pt22

5.25

 

29.09

 

0.90

1.83

3.34

9.39

 

 

 

1.61

48.59

 

Ole14(1)pt23

2.96

 

47.62

3.25

 

0.79

1.65

5.94

11.30

 

 

26.47

 

 

Ole14(1)pt24

2.65

 

28.08

 

 

1.03

2.16

6.93

 

 

0.79

2.63

55.73

 

Ole14(1)pt25

4.92

 

36.47

 

1.37

3.49

7.60

23.70

 

 

4.48

4.50

13.46

 

Ole14(1)pt26

2.84

 

32.34

 

 

0.86

3.14

11.61

 

 

0.73

1.99

46.48

 

92

4. Rievda

4.1. Introduction

Like the nearby town of Lowoziero, Rievda has cultural links with the Loparas, the Ugro-Finnish people, which living in these areas [20]. The city center is built in neoclassical style. These are brick houses with two storeys, which are in a different technical condition at the moment. Next to them are typical apartment blocks. The city is closely connected with the mining industry located in the nearby quarries. Due to the fact that at present the industry has suffered a significant regression also has a negative impact on the condition of the city. Many of the residential houses, especially the oldest ones, are abandoned, which affects the ghostly impression of the city.

Location in the central part of the village. Kola, slightly east, away from the main routes, the city has two access roads, one in better condition towards Oleniegorska and the other in very poor technical condition towards Murmansk. There is also a processing facility in the town of Karnasurt, through which the informal trail leading to the center of the Lowozierskie Massif (Sieidoziero lake) leads through the area. The climate of the city is more continental than the Apatite. Winter is much more severe. Although not able to reach the direct data, field observations made in the city and surrounding areas condemn the significant decrease of vegetation in the mountains, which indicates a stiffer climate. East of the city in the center of the peninsula is the area of eternal permafrost also indicating the much stricter climatic conditions in the city.

There is also great potential related to cultural and ethnic aspects and tourism due to the geographic location of the city. This aspect, however, is definitely unused and at present requires development.

4.2. Methodology

Field studies were conducted in Riew together with sample inventory and photographic documentation (fig. 4.7). The sampled samples were examined by microscopic methods and then analyzed in micro area and ICO-OAS and ASA.

4.3. Results

Field studies have shown that the city is currently neglected. This refers to the general character of the city (fig. 4.5). Many homes are abandoned, the technical condition of the inhabited homes in many cases requires urgent repairs. It makes it not very interesting impression for the tourist spending time in the city. For comparative purposes, four plaster samples were taken in the city and one sample in the processing plant.

93

Microscopic studies have shown some variation in the samples (fig. 4.6). Samples 01 and 04 were found to have a reddish color, and sand mineral adherents were found in sample 03. In samples 02 and 05, plants (algae, mosses) were observed. In samples 02, 03, solids were observed and in samples 02 and 04 the metallic impurities.

Barite admixtures were found in sample 05 (fig. 4.8, tab. 41–4.5). Microelectrode studies using EDS enabled the determination of the presence of sulfur compounds in samples 01 and 05 in samples 03 and 04 of chlorine and in samples of 03–05 phosphorus. In addition, the following metallic additives were found: iron and titanium (all samples), zinc (sample 01), nickel (sample 05) and dopant Nb (sample 04). Studies on cumulative pollutants (fig. 4.1) show that most of them are in samples 04 and 05, respectively, from Ul Kuzina and Komsomolska (fig. 4.8, tabs 4.1–4.5).

6

5

4

3

2

1

0

RV01

RV02

RV03

RV04

RV05

C S Cl P Fe Ti Zn Ni Nb

Fig. 4.1. Composition of pollutants in the tested Rievdy plaster samples

Chemical studies of samples with ICP-OAS and ASA showed different proportions of the dopants in them. In the case of zinc, the highest content of this metal was found in sample 01 from Komsomolska Street where it exceeded 740 ppm (fig. 4.2). The lowest values were found in samples 3 and 4 of the streets Kuzina and Pobeda (about 150ppm). In the case of Manganese, the highest values of 366ppm were found in sample 03 from Pobeda, while the remaining samples were 260ppm. In the case of iron, most of this metal was found in samples 3 and 4 (Kuzina and Pobeda Streets) where the value of this metal exceeded 12typpm, the lowest value of 3200ppm was found in sample 01 from Komsomolska Street. In the case of copper the highest values were found in sample № 04 (ul Kuzina) and 02 (from Karnasurt Processing Plants), the lowest values of this element were found in 01 and 03 (Komsomolska and Pobedy Streets) where the value was below 20ppm. In the case of arsenic,

94

the highest values were found in sample 03 (ul Pobiedy) – 6 ppm and 04 (ul Kuzina) – 05 ppm. In the remaining samples the arsenic values were 4ppm. For lead, significant values were found in samples 03 and 04 (ul Kuzinina and Pobeda) in the amount of 10ppm, in the remaining samples the lead content was marginal. For chromium, the maximum concentrations were measured in sample 02 (20ppm) and 04i 02 (19ppm), in sample 03 the content was about 15ppm. In the case of titanium in all samples, its value was similarly high at 3800ppm, the highest in sample 04 (3875ppm). For cadmium in all samples, its value was about 1ppm, except for sample 03 (2ppm).

Fig. 4.2. Content of investigated metals in analyzed samples based on ICP-OAS analysis [ppm]

100000,00

 

 

 

20000,00

 

 

 

10000,00

 

 

 

15000,00

 

 

 

1000,00

 

 

 

 

 

 

 

 

 

 

 

 

 

100,00

 

 

 

10000,00

 

 

 

10,00

 

 

 

 

 

 

 

1,00

 

 

 

5000,00

 

 

 

 

 

 

 

 

 

 

0,10

Zn Mn Fe

Cu As Pb

Ni Cr Ti

Cd

 

 

 

 

 

 

0,00

 

 

 

 

 

 

 

 

 

 

0,01

 

 

 

Rv01

Rv02

Rv03

Rv04

 

max

min

średnia

 

Suma

 

 

Fig. 4.3. Comparison of metal content

Fig. 4.4. Maximum contamination

 

 

scale in samples

 

values in the samples tested

 

By analyzing the trends in the content of metals in the few samples that have been tested in Riew, it can be stated that for the content of manganese, copper, nickel, chromium, titanium, these contents in all samples are very close to each other. In the case of iron, the difference in content is four times the minimum, and in the case of zinc, the difference is fivefold, and for lead it is the largest, although the absolute value of the content of these metals is not very high.

95

4.4. Discussion

Field studies have shown that Riewda is a neglected, destroyed and abandoned city today (fig. 4.5). Many buildings even on the main street today are abandoned and destroyed. This also contributes to the large corrosion of plaster in the city and the destruction of its infrastructure. These factors can cause anomalies that increase the pollutants in the test plaster samples [5]. This is confirmed by microscopic studies showing numerous solids and plants in plaster samples. Analyzes in the microbehear showed sulfur, chlorine, iron, titanium and chromium and nickel dopants (fig. 4.8, tabs 4.1–4.5). Similar results were obtained by analyzing samples with ICP-OAS and ASA. In general it can be stated that the greatest amounts of dopant and impurities were identified in samples 03 and 04 corresponding to the locations at Kuzina and Pobedie Streets (fig. 4.4). These streets are located in the southern part of the town, close to residential buildings (ul Kuzina) and in the industrial area of the city (Pobedy Street). There may be increased traffic in both locations [2–4, 6, 9, 10, 13, 15, 16].

4.5. Conclusions

Riewda Township initially was geared solely to the mining industry. At the time of its progressive liquidation, it is depopulated and abandoned. Many of the houses in Rieva are in ruins even on the main streets. The city has a lot of tourist potential associated with the numerous Lowozierska Massif which is located at the foot of it, but without the help of the central authorities, is essentially doomed. The behavior of the city is reflected in the quality of samples taken from the façade of houses that are not repaired are subject to destruction. Microscopic analyzes have shown corrosion of plasters as a consequence of their improper protection, which in interaction with acute northern climate contributes to their rapid degradation. This is also supported by microarray analysis and ICP-OAS and Asa studies showing a number of metallic contaminants resulting from urban infrastructure corrosion and a certain number of contaminants (Zn, Pb, cd) due to vehicular traffic or badly secured old facilities currently destroyed and washed away by rains.

4.6.References

1.Beck B. D., Brain J. D.;1982, Prediction of the pulmonary toxicity of respirable combustion products from residential wood and coal stoves. In Residential Wood and Coal Combustion, pp. 264–280. Air Pollution Control Association, Louisville, Kentucky. Dockery D. W., Pope C. A. III, Xu X

96

2.Berkowicz, R.; 1998, Street scale models. In: Fenger, J., Hertel, O., Palmgren, F. (Eds.), Urban Air Pollution, European Aspects. Kluwer Academic Publishers, Dordrecht, pp. 223–251.

3.BianChini F., M. Parkinson (red); 1993, Cultural Policy and Urban Regeneration: The West European Experience, Manchester University Press, Manchester 1993.

4.Chow, J.C., Watson, J.G., Louie, P.K.K., Chen, L.W.A., Sin, D.; 2005, Comparison of PM2.5 carbon measurement methods in Hong Kong, China. Environmental Pollution 137, 334–344.

5.Fałtynowicz W., Izydorek I., Budzbon E.; 1991, The lichen flora as bioindicator of air pollution of Gdańsk, Sopot and Gdynia, Monographiae Botanicae, vol. 73, wyd Warszawa.

6.Fenger, J., Hertel, O., Palmgren, F.;1998, Urban air Pollution, European Aspects. Kluwer Academic Publishers, Dordrecht.

7.Huber M., Mroczek P.; 2012, Kamień w architekturze Lublina na przestrzeni wieków, Biuletyn PIG 448; 2012, 441–450.

8.Jędrysiak T.; 2008, Turystyka kulturowa, PWE, Warszawa.

9.Larssen, S., Hagen, L.O.; 1997, Air pollution monitoring in Europe – Problems and Trends. Topic report 26. 1996. European Environment Agency, Copenhagen.

10.Mage D., Ozolins G., Peterson P., Webster A., Orthofer A., Vandeweerds V., Gwynnet M.; 1996, Urban air pollution in megacities of the World, Atmospheric Environmental Vol. 30, №. 5, pp. 81–86.

11.Majewski P.; 2009, Ideologia i konserwacja. Architektura zabytkowa w Polsce w czasach socrealizmu, Trio, Warszawa.

12.Murzyn M.; 2008, Heritage Transformation in Central and Eastern Europe [w:] The Ashgate Research Companion to Heritage and Identity, red. B. Graham,

P.Howard, Ashgate, Aldershot.

13.Pawlowski A.; 1996, Perception of environmental problems by young people in Poland, Environmental Education Research, 2(3), pp. 279–285.

14.Riegl A.; 2002, Nowoczesny kult zabytków. Jego istota i powstanie [w:] Alois Riegl, Georg Dehio i kult zabytków, red. J. Krawczyk, Mówią Wieki, Warszawa.

15.Samet, J. M., Dominici, F., Curriero, F. C., Coursac, I., and Zeger, S. L.; 2000, Fine particulate air pollution and mortality in 20 US cities, 1987–1994. N. Engl.

J.Med. 343:1742–1749.

16.Shi, Z., Shao, L., Jones, T.P., Lu, S.; 2005, Microscopy and mineralogy of airborne particles collected during severe dust storm episodes in Beijing, China. Journal of Geophysical Research 110, D01303.

17.Szmygin B.; 2000, Kształtowanie koncepcji zabytku i doktryny konserwatorskiej w Polsce w XX wieku, Politechnika Lubelska, Lublin.

18.Szmygin B.; 2008, Czy można chronić świat, który przestał istnieć? Dzielnica żydowska w Lublinie [w:] Przywracanie pamięci. Rewitalizacja zabytkowych dzielnic żydowskich w miastach Europy Środkowej, red. M. Murzyn-Kupisz,

J.Purchla, MCK, Kraków.

19.Szmygin B.; 2009, Adaptacja obiektów zabytkowych do współczesnych funkcji użytkowych, red. ICOMOS, Politechnika Lubelska, Warszawa-Lublin.

20.Гаркотин В. Бяломоре, 2013; издателство Нива Пресс, с. 240.

97

4.7. Graphic and tables attachement

Fig. 4.5. Photographs from different area of Rievda city

98

RV01

RV02

RV03

RV04

RV05

Fig. 4.6. Microphotographs from the binocular magnifier (left), polarized microscope in reflected light (center) and electrons backwards scattered (right) Rievda plaster samples

99

Fig. 4.7. Situated sketch of the Rievda city with markered sample localization

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Rv01Tynk(1) pt1

Rv01Tynk(1) pt2

Rv01Tynk(1) pt3

Rv01Tynk(1) pt4

Rv01Tynk(1) pt5

Rv01Tynk(1) pt6

Rv01Tynk(1) pt7

Rv01Tynk(1) pt8

Rv01Tynk(1) pt9

Rv01Tynk(1) pt10

Rv01Tynk(1) pt11

Rv01Tynk(1) pt12

Rv01Tynk(1) pt13

Rv01Tynk(1) pt14

Rv01Tynk(1) pt15

Rv01Tynk(1) pt16

Rv01Tynk(1) pt17

Rv01Tynk(1) pt18

Rv01Tynk(1) pt19

Rv01Tynk(1) pt20

Rv01Tynk(1) pt21

Rv01Tynk(1) pt22

Rv01Tynk(1) pt23

Rv01Tynk(1) pt24

Rv01Tynk(1) pt25

Rv01Tynk(1) pt26

Rv01Tynk(1) pt27

Pm-L

Zn-L

Fe-L

Ti-K

Ca-K

K-K

S-K

Si-K

Al-K

Mg-K

Na-K

F-K

100

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]