Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Лекции Хомича Цитология

.pdf
Скачиваний:
415
Добавлен:
08.03.2020
Размер:
13.96 Mб
Скачать

Лізосоми, які не увійшли в контакт з розщеплюваним матеріалом і їх ферменти перебувають у неактивному стані, називають первинними. Вторинні лізосоми формуються внаслідок злиття первинних лізосом з фагоцитозними й піноцитозними пухирцями (фаголізосоми) або зі зруйнованими частинами клітин (аутофагосоми). При цьому їхні ферменти активізуються і перетравлюють вміст пухирців. Третинні лізосоми (залишкові тільця) містять неперетравлені рештки біополімерів. Вміст цих лізосом з віком тварин може збільшуватись. Найбільше лізосом містять клітини, здатні до фагоцитозу. Руйнування білків відбувається не тільки у лізосомах, а й у поліпротеазних комплексах –

протеасомах.

Пероксисоми субмікроскопічні органели загального призначення. Вони мають вигляд пухирців діаметром 0,2–0,5 мкм, які містять ферменти окиснення амінокислот, фермент каталазу і ферменти, що розщеплюють етиловий спирт, сечову кислоту та регулюють обмін ліпідів. Під час окиснення амінокислот утворюється пероксид Гідрогену, токсичний для клітин. Він руйнується ферментом каталазою. Найбільше пероксисом міститься в клітинах печінки, нирок та яєчників.

Немембранні органели. До них належать рибосоми, мікротрубочки, мікрофіламенти й клітинний центр (цитоцентр). Усі вони є органелами загального призначення.

Рибосоми субмікроскопічні органели загального призначення, що утворюються в ядрі, а функціонують переважно в цитоплазмі. Їх вперше описав Д.Паладе. Вони мають вигляд округлих утворів діаметром 10–30 нм і складаються з двох субодиниць – великої й малої, які побудовані з білка та рибосомної РНК. Розрізняють поодинокі рибосоми і їх угруповання – полірибосоми. Вони можуть розміщуватись вільно в гіалоплазмі або приєднуватись до мембран ендоплазматичної сітки. Рибосоми беруть участь у синтезі білка. На них відбувається формування поліпептидів і білків. Вільні рибосоми синтезують білок, який використовується клітиною для власних потреб. Білок, синтезований рибосомами на мембранах ендоплазматичної сітки, потрапляє в порожнини її структур, транспортується в комплекс Гольджі і в складі секреторних гранул виводиться з клітини (секреторні білки) або використовується для формування лізосом і пероксисом.

33

Мікротрубочки – субмікроскопічні органели загального призначення. Вони мають вигляд довгих, прямих, нерозгалужених порожнистих циліндрів діаметром 24 нм, які в інтерфазнiй клітині формують сітку. Їхня стінка утворена щільно розміщеними 13 нитками субодиниць, які побудовані з молекул глобулярних білків тубулінів, здатних до полімеризації. Мікротрубочки дуже лабільні. У разі зміни умов навколишнього середовища (зниження температури) та під дією колхіцину їх формування припиняється і вони розпадаються на складові частини. Мікротрубочки формують цитоскелет, входять до складу органел (цитоцентр, війки, джгутики), беруть участь у внутрішньоклітинному транспорті мікропухирців, рибосом, мітохондрій та інших структур. Ними утворені базальні тільця. Під час репродукції клітин система мікротрубочок зникає і замість неї формується веретено поділу.

Мікрофіламенти субмікроскопічні фібрилярні органели загального призначення. Вони мають товщину 5–17 нм і розміщені переважно в периферійній частині цитоплазми під плазмолемою та в цитоплазматичних виростах. Мiкрофiламенти побудовані зі скоротливих білків – актину, міозину, тропоміозину або альфа-актиніну і виконують опорно-рухову функцію.

Клітинний центр (цитоцентр) – мікроскопічна органела за-

гального призначення. Її вперше описав В.Флемінг у 1875 році. Вона складається з двох центріолей (диплосома) і центросфери (рис. 6). Електронномікроскопічними дослідженнями встановлено, що центріолі мають вигляд порожнистих циліндрів діаметром 0,2 мкм і завдовжки 0,3–0,5 мкм, стінка яких утворена дев’ятьма триплетами паралельно розміщених мікротрубочок, які сполучаються між собою спеціальними структурами – “ручками”. Останні утворені білком динеїном, якому належить провідна роль у реалізації руху центріолей. Одну з центріолей називають материнською, другу – дочірньою. Материнська центріоля має додаткові структури – сателіти (місця відходження від неї мікротрубочок) і додаткові мікротрубочки. Ці мікротрубочки відходять від центріолі в радіальному напрямку і формують центросферу. В ділянці центросфери, гіалоплазма, крім мікротрубочок інших органел немає. Дочірня центріоля додаткових структур не має і розміщена під прямим кутом до материнської.

Центріолі є центрами формування мікротрубочок цитоплазми й мікротрубочок веретена поділу, яке забезпечує розходження хромосом під час поділу клітин. Вони ж формують базальні тільця аксонеми війок або джгутиків окремих різновидів клітин. Перед поділом клітини центріолі подвоюються.

34

 

Рис. 6. Цитоцентр (схема):

 

1

— материнська центріоль; 2 — сателіт; 3 — мікротрубочки

центросфери;

4

— триплет мікротрубочок центріолі; 5 — дочірня центріоль

 

 

О р г а н е л и с п е ц і а л ь н о г о п р и з н а ч е н н я .

Д о н и х

н а л е ж ать органели руху (війки, джгутики), мікроворсинки та мiкрофiбрили. Останні поділяють на тонофібрили, мiофiбрили i нейрофібрили.

Війки і джгутики – це тонкі вирости цитоплазми. Довжина війок становить 5–10 мкм, джгутиків – 150 мкм. Всередині війок і джгутиків є осьова нитка – аксонема, а в її основі – базальне тільце. Аксонема має вигляд циліндра, стінка якого утворена дев’ятьма парами мікротрубочок. У центрі циліндра знаходиться 10-та пара мікротрубочок. Усі мікротрубочки сполучені між собою, а також з базальним тільцем в єдину рухову систему. Мікроструктура базального тільця подібна до будови центріолі. Зміщення положення пар мікротрубочок аксонеми зумовлює рух війок і джгутиків. Війки характерні для епітеліальних клітин дихальних шляхів і маткової труби. Джгутик формує хвостовий відділ статевої клітини самця – сперматозоїда.

Мікроворсинки – це вирости цитоплазми, завдовжки 1 мкм, всередині яких знаходиться пучок мікрофіламентів. Вони збільшують поверхню клітини і добре розвинені в епітеліальних клітинах слизової оболонки кишок.

Тонофібрили, міофібрили і нейрофібрили – це різновиди мікрофібрил, які утворені мікротрубочками і мікрофіламентами та ха-

35

рактерні для клітин окремих тканин. Тонофібрили властиві епітеліальним клітинам. Вони формують їх цитоскелет. Міофібрили утворюють скоротливий апарат м’язових волокон і серцевих міоцитів. Нейрофібрили формують скелет нервових клітин.

Включення – непостійні компоненти цитоплазми. Вони накопичуються і зникають залежно від метаболічного стану клітин. Включення мають вигляд гранул, крапель і грудочок різного розміру. Їх поділяють на трофічні, секреторні, пігментні, вітамінні та екскреторні. До трофічних включень належать жири, вуглеводи й білки. Секреторні включення (секрет, інкрет) накопичуються в залозистих клітинах і є продуктами їх діяльності. Пігментні включення можуть бути екзогенного (каротин, барвники, часточки пилу) і ендогенного (гемоглобін, білірубін, меланін та ін.) походження. Наявність пігментів зумовлює колір клітин і тканин. Екскреторні включення – це продукти метаболізму, які шкідливі для клітин. Вони виводяться з клітин і організму. Вітамінних включень багато в клітинах печінки.

Ядро є складовою частиною клітин (рис.7). Разом з цитоплазмою вони утворюють єдину взаємодоповнювану систему, що перебуває в стані динамічної рівноваги. Клітина не може довго існувати і функціонувати без ядра – вона гине. Однак і ядро не здатне до самостійного існування без клітини.

Більшість клітин мають одне ядро, але бувають двоядерні (20% клітин печінки) і багатоядерні (мегакаріоцити, остеокласти) клітини. Форма ядер різноманітна і залежить здебільшого від форми клітин. Вони можуть бути округлими, паличкоподібними, кільцеподібними, овальними або сегментованими. Розмір ядер коливається в широких межах (3–40 мкм). Він залежить від особливостей клітин, їх віку та функціонального стану. Для окремих клітин крові (лімфоцити) характерне велике ядро, об’єм якого більший від об’єму цитоплазми. Ядра молодих клітин більші, ніж зрілих. Розмір ядер збільшується у клітин, що активно функціонують.

Ядра завжди розміщені в певних місцях клітин і бувають у двох станах – мітотичному та інтерфазному. Для кожного виду клітин властиве постійне співвідношення між об`ємом ядра і цитоплазми – ядер-

но-цитоплазматичне співвідношення (індекс Гертвіга).

Хімічний склад ядра подібний до такого цитоплазми. Однак у ядрі знаходиться майже вся ДНК, багато глобулярних білків і менше, ніж у цитоплазмі, РНК та ліпідів.

36

Рис. 7. Електронна мікрофотографія ядра кровотворної клітини ( 16000):

1 — оболонка ядра; 2 — пори в оболонці; 3 — грудочки хроматину; 4 — ядерце; 5 — гранулярна ендоплазматична сітка (за Фаусетом)

Ядро виконує функції, які можна об’єднати у дві групи. Перша група – це збереження спадкової (генетичної) інформації. До неї входять такі функції: підтримання сталої структури ДНК, редуплікація молекул ДНК, розподіл генетичного матеріалу під час поділу клітин та рекомбінація генетичного матеріалу в процесі мейозу. Друга група функцій реалізує генетичну інформацію – утворює апарат білкового синтезу. Це синтез усіх видів РНК і побудова рибосом. Таким чином, у ядрі міститься, функціонує і самовідтворюється генетичний матеріал.

Інтерфазне ядро складається з чотирьох компонентів: оболонки, нуклеоплазми, хроматину і ядерця.

Ядерна оболонка (нуклеолема) утворена двома клітинними мембранами завтовшки 7–8 нм, які відокремлені одна від одної перинуклеарним проміжком завширшки 20–60 нм. Зовнішня мембрана за своїми структурними особливостями подібна до мембрани гранулярної ендоплазматичної сітки. На ній також розміщені рибосоми, і вона може безпосередньо переходити в мембрану ендоплазматичної сітки. Внутрішня мембрана пов’язана з хроматином ядра. Через певні проміжки периметра ядра мембрани перериваються і переходять одна в одну. У цих місцях утворюються пори – отвори в нуклеолемі – діаметром 80–90 нм. Через пори відбувається транспорт речовин з ядра в цитоплазму і навпаки. Регуляція транспорту здійснюється комплексом пори, який утворений глобулярними й фібрилярними білками. Глобулярні білки утворюють гранули діаметром 25 нм. Вони розташовані по периметру стінки пори у три ряди. У кожному ряду є 8 гранул. У центрі пори міститься центральна гранула. Від гранул відходять фібрили, які сходяться у центрі пори і утворюють своєрідну діафрагму

37

пори, яка при проходженні речовин через пору відкривається. Крім транспортної нуклеолема виконує бар’єрну функцію і здійснює фіксацію хроматину інтерфазної клітини.

Нуклеоплазма (ядерний сік) – аналог гіалоплазми цитоплазми клітини. Це рідка частина ядра, в якій розміщені всі його структури. В ній міститься значна кількість білків, що утворюють ядерний матрикс. Він підтримує загальну структуру інтерфазного ядра і бере активну участь у процесах його метаболізму. Крім білка до складу нуклеоплазми входять інші органічні речовини, вода та мінеральні солі.

Хроматин під світловим мікроскопом має вигляд грудочок, зерен, ниток, які інтенсивно забарвлюються основними барвниками. Завдяки особливості добре забарвлюватися названі структури і дістали назву “хроматин” (chroma – колір, фарба). До складу хроматину входять ДНК, (40%), білки (59–60%) і в незначній кількості РНК (1%). З хроматину побудовані хромосоми.

Хроматин інтерфазного ядра – це хромосоми, які не мають компактної будови і перебувають у стані розпушення, деконденсації або в різних фазах конденсації. Залежно від ступеня розпушення, деконденсації чи конденсації хромосом хроматин поділяють на еухроматин і гетерохроматин. Еухроматин – це повністю деконденсовані хромосоми. Він розпилений у нуклеоплазмі і в ядрі невидимий. У разі неповного розпушення хромосом або їх конденсації в інтерфазному ядрі видно грудочки гетерохроматину, які здебільшого пов’язані з оболонкою ядра. У функціональному відношенні еу- і гетерохроматин не однозначні. Еухроматин – це робочий, функціонально активний хроматин, у якому відбуваються процеси редуплікації ДНК і транскрипції РНК. Гетерохроматин функціонально не активний. Крім еу- і гетерохроматину виділяють ще і статевий хроматин (тільця Барра). Це одна із Х-хромосом соматичних клітин самок, яка в період інтерфази знаходиться у конденсованому стані (гетерохроматинізована).Максимально конденсований хроматин спостерігається в мітотичному ядрі у вигляді хромосом. У цей період хромосоми не виконують синтетичних функцій.

Будова хромосоми. Хромосома – це молекула ДНК, яка зв’язана з білками (дезоксинуклеопротеїд, ДНП). Хромосоми існують упродовж усього життя клітини, перебуваючи в різних структурнофункціональних станах. У інтерфазній клітині вони перебувають переважно в стані деконденсації. Найменшими структурними компонентами хромосом у стані деконденсації є нуклеопротеїдні фібрили завдовжки кілька сантиметрів, які видимi тільки в електронний мікроскоп. Вони складаються з ДНК і білків, переважно гістонів. Молекули

38

гістонів утворюють групи – нуклеосоми, розміщені ланцюжком у вигляді спіралі. Кожну нуклеосому зовні обплітає у вигляді спіралі ділянка ДНК. На початку мітозу відбувається інтенсивна конденсація (формування) хромосом. При цьому хромосомні нуклеопротеїдні фібрили утворюють численні вигини, які формують дрібні, щільно упаковані петлі, сполучені між собою негістоновими білками. Такі конденсовані ділянки хромосом називають хромомерами. Хромомери зближуються і утворюють хромонеми – нитчасті структури, які видимі в світловий мікроскоп. Останні спіралізуються, їх називають хроматидами. Залежно від фази мітозу хромосома має одну або дві хроматиди.

Конденсовані, мітотичні хромосоми мають вигляд ниток або паличок завдовжки 1,5–10 мкм, завтовшки 0,2–2 мкм (рис. 8). У хромосомі є первинна перетяжка (центромер), яка ділить її на два плеча. У ділянці первинної перетяжки міститься кінетохор. Він є центром організації мікротрубочок, які розташовані між хромосомами і центріолями та є частинами веретена поділу. Кінцеві ділянки хромосом називають теломерами. Вони запобігають розпаду хромосом і з`єднанню їх з іншими хромосомами. Після кожного поділу клітин довжина теломерів зменшується. Залежно від розміщення центромера і довжини плеч хромосоми поділяють на метацентричні (плечі одна-

кові), субметацентричні (плечі неоднакові) та акроцентричні (одне плече дуже коротке).

Рис. 8. Види хромосом (схема):

1 — метацентричні; 2 — субметацентричні; 3 — акроцентричні; 4 — супутникові; Ц — центромери; ЯО — ядерцеві організатори; Т — теломери

Окремі хромосоми мають вторинні перетяжки. Вони відділяють ділянки хромосом, які називають супутниками. В ділянках вторинних перетяжок розміщені гени ДНК, відповідальні за синтез рибосомної РНК (ядерцеві організатори). Набір хромосом клітини, який визначається їх числом, розмірами та формою, називають каріотипом. До каріотипу входять соматичні і статеві хромосоми.

39

Ядерце найщільніша структура ядра округлої форми і діаметром 1–5 мкм. В ядрі, як правило, є одне-два ядерця, але деякі ядра мають їх кілька десятків (овоцити риб). У ядерці утворюються рибосомна РНК і субодиниці рибосом. Формування ядерець пов’язане з хромосомами, які мають вторинну перетяжку (ядерцеві організатори). Ядерця утворюють білки, РНК і ДНК, які формують його гранулярний і фібрилярний компоненти. Гранулярний компонент представлений гранулами діаметром 15–20 нм. Гранули – це дозріваючі субодиниці рибосом. Фібрилярний компонент утворений рибонуклеопротеїдними тяжами – попередниками субодиниць рибосом. На периферії ядерець знаходиться приядерцевий хроматин.

Запитання для самоконтролю

1. Будова, функції та класифікація лізосом. 2. Будова і функції пероксисом. 3. Назвіть немембранні органели. 4. Будова і функції мікротрубочок, мікрофіламентів і клітинного центру. 5. Назвіть органели спеціального призначення. 6. Будова і функції війок, джутиків і мікроворсинок. 7. Мікрофібрили. 8. Що таке цитоплазматичні включення? 9. Класифікація включень. 10. Які функції виконує ядро клітини? 11. Від чого залежать розміри ядра? 12. Форма ядер. 13. У якому стані може бути ядро? 14. Якими складовими утворене ядро? 15. Будова і функції оболонки ядра, нуклеоплазми, хроматину і ядерця. 16. Будова і класифікація хромосом. 17. Що таке каріотип?

Лекція 5. Життєдіяльність клітин

Прояви життєдіяльності клітин. Обмін речовин. Ріст клітин. Подразливість клітин. Рух клітин. Старіння і смерть клітин. Репродукція клітин. Клітинний цикл. Мітоз. Амітоз. Мейоз. Неклітинні структури організму.

Клітина, як зазначалося вище, – це відкрита елементарна біологічна система, якій характерні всі властивості “живого”. Ці властивості клітини реалізуються в процесі життєдіяльності, в основі якої лежить обмін речовин. Він здійснюється між клітиною і навколишнім середовищем, а також у самій клітині. В багатоклітинних організмах клітини є частинами цілого і їх життєдіяльність підпорядкована цьому цілому – організмові. Свій вплив на клітини організм здійснює через нервову систему та гормони залоз внутрішньої секреції. Життєдіяль-

40

ність клітин залежно від їх клітинного (життєвого) циклу поділяється на періоди інтерфази й мітозу. В період інтерфази активно відбуваються всі життєві процеси, крім поділу.

Обмін речовин – це певний порядок перетворення речовин, який забезпечує збереження, самооновлення клітин і виконання ними функцій. У процесі обміну речовин між клітинами й оточуючим середовищем у клітини надходять органічні та неорганічні речовини, які вступають у внутрішньоклітинний обмін, зазнаючи різних перетворень (гідроліз, синтез, окиснення, переамінування, відновлення), у результаті чого їх проміжні та кінцеві форми входять до складу структур клітини або продуктів, які синтезуються клітинами. Частина кінцевих і проміжних продуктів обміну видаляються з клітин. Перетворення речовин у клітинах відбуваються у вигляді хімічних реакцій, які регулюються особливими білками – ферментами. Вони локалізовані переважно на мембранах органел клітини й утворюють ферментні системи. Регуляція ферментних систем здійснюється гормонами, а також продуктами, синтезованими в процесі реакції, за принципом зворотного зв’язку. Отже, обмін речовин між клітинами і навколишнім середовищем складається з трьох етапів: 1) надходження речовин у клітини; 2) перетворення речовин у процесі внутрішньоклітинного обміну; 3) виведення продуктів обміну з клітин.

Надходження речовин у клітину здійснюється через плазмолему шляхом ендоцитозу. В клітинах ці речовини у вигляді фагоцитарних і піноцитозних пухирців зв’язуються з лізосомами і утворюють вторинні лізосоми (травні). Ферменти лізосом розщеплюють речовини до простих складників, які крізь стінки лізосом проникають у гіалоплазму і вступають у внутрішньоклітинний обмін. Енергія, потрібна для забезпечення цього обміну, надходить з мітохондрій у вигляді АТФ. Продукти обміну клітин, які не використовуються ними, виводяться у навколишнє середовище також через плазмолему шляхом екзоцитозу. Прикладом використання речовин у процесі внутрішньоклітинного обміну є процеси синтезу білків і утворення секретів.

Синтез білка складається з кількох етапів, яким передує процес матричного синтезу, або транскрипції. В результаті цього процесу на ДНК синтезується інформаційна РНК (іРНК), в якій міститься інформація про послідовність сполучення амінокислот у білковому ланцюзі. На ДНК синтезуються також транспортна РНК (тРНК). Синтезовані іРНК і тРНК з ядра надходять у цитоплазму, де іРНК з`єднується з меншою субодиницею рибосом.

На першому етапі відбувається активація амінокислот – сполучення їх з АТФ. Активовані амінокислоти приєднуються тільки до

41

своєї тРНК. Транспортна РНК – це молекула, на одному з кінців якої знаходиться антикодон (триплет) – ділянка з трьох азотистих основ. Антикодон комплементарний певному кодону іРНК.

На другому етапі тРНК переносить активовані амінокислоти до рибосом і прикріплюється до великої субодиниці. Антикодон тРНК приєднується до кодону іРНК за правилом комплементарності, після чого іРНК здійснює переміщення (крок) на рибосомі. Активована амінокислота вступає до складу утворюваного поліпептидного ланцюжка, а тРНК втрачає зв’язок з рибосомою. Вона потрапляє в гіалоплазму і знову сполучається з амінокислотою. Таким чином, до іРНК приєднуються в певній послідовності всі амінокислоти, що утворюють молекулу білка.

На третьому етапі синтезовані молекули білка від’єднуються від іРНК і потрапляють у порожнини цистерн ендоплазматичної сітки або в гіалоплазму, де набувають специфічної форми.

Життєдіяльність клітин виявляється не тільки в їх самооновленні, здатності синтезувати певні продукти, а й у рості, подразливості, здатності до руху, самовідтворенні, старінні та смерті.

Ріст клітин, тобто збільшення їх розмірів, характерний для молодих клітин, що утворилися після поділу. Він відбувається тоді, коли пластичний обмін переважає над енергетичним. Клітини, що ростуть, мають велике ядро з дрібнодисперсним хроматином, одним великим або кількома ядерцями, що свідчить про активність формування апарату білкового синтезу і власне синтезу білків. У таких клітинах активно відбуваються процеси ендоцитозу, у цитоплазмі зростає кількість органел і збільшується їх об’єм. Ріст клітин відбувається лише в інтерфазі. Наприкінці інтерфази клітина досягає певних розмірів, які визначаються оптимальними ядерно-цитоплазматичними співвідно-

шеннями, характерними для клітин різних тканин.

Подразливість клітин – це властивість їх реагувати на дію подразників навколишнього середовища. У процесі подразливості виділяють три етапи: 1) дія подразника (фізичного, хімічного) на клітину; 2) перехід клітини у збуджений стан, що виявляється зміною біохімічних і біологічних процесів, які в ній відбуваються; 3) відповідь клітини на дію подразника, яка в клітинах різних тканин проявляється по-різному. Так, у сполучній тканині відбувається місцева зміна обміну речовин, у залозистому епітелії виділяється секрет, у м’язовій тканині настає скорочення, у нервових клітинах генерується нервовий імпульс.

Залежно від сили подразника й тривалості його дії розрізняють три типи подразливості: нормальну, паранекротичну і некротичну.

42