Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка(ответы на экз вопросы).doc
Скачиваний:
111
Добавлен:
28.11.2021
Размер:
3.25 Mб
Скачать

8.История развития строения атома. Радиоактивность.Α-β- γ- излучения.

Модель Томсона. Опыты Резерфорда по рассеиванию α- частиц. Модель атома по Э.Резерфорду ее недостатки.

9.Теория атома водорода по Бору (постулаты Бора). Закон и уравнение Планки.

Корпускулярно-волновые свойства электрона. Уравнение де Бройля. Уравнение Шредингера.

Способность неустойчивых ядер самопроизвольно распадаться называются радиоактивностью, а сами неустойчивые атомы – радиоизотопами.

Процессы, в которых атомы одних видов превращаются друг в друга, называются, ядерными реакциями их изучают специальные разделы физики и химии (ядерная физика и ядерная химия).

Процесс радиоактивного распада(Rа) сопровождается выделением энергии в виде потока ά - частиц, β-частиц, γ- излучения.

ά -распад ядро испускает ά -частицу, которое представляет собой ядро атома гелия 42Не, т.е. состоит из 2х протонов и 2х нейтронов.

При ά - это поток положительных заряженных ά – частиц при распаде массовое число атома уменьшается – на 4, а заряд ядра на 2

Например: 22688R→ 22286 Rn +42Не

β-распад. В неустойчивом ядре нейтрон превращается в протон, при этом ядро испускает электрон β-частицу: n→p+е

При β - распаде массовое число изотопа не изменяется т.к. общее число протонов и нейтронов сохраняется, а заряд ядра увеличивается на 1 .

Например: 23490Th→23491Ра + е

Торий протактиний

Т.о. β – излучение – это поток отрицательно заряженных частиц электронов, которое является следствием внутриядерного превращения нейтронов в протоны (n→р + е) в результате чего масса остается без изменения а заряд ядра увеличивается на 1.

γ- излучение – это излучение очень высокой энергии, являющееся следствием перехода атома из одного энергетического состояния в другое, при этом ни массовое число, ни заряд ядра – не изменяются.

открытие рентгеновских лучей Конрадом Рентгеном показало, что атом сложен и состоит из положительных и отрицательных частиц, наименьшую из которых Томсон назвал электроном. Более того, Малликен измерил её заряд е = -1,6×10-19 Кл. и нашел массу электрона m = 9,11×10-31 кг.

На основании вышеприведенных исследований в 1903 г. Томсон предложил модель атома, которая была названа «пудинг с изюмом», положительный заряд в атоме распределен равномерно с вкрапленным в него отрицательным зарядом. Но дальнейшие исследования показали несостоятельность этой модели.

Модели атома: а) Томсона ("сливовый пудинг"),б) Резерфорда ("электронный рой" в пространстве вокруг ядра), в) планетарная

Резерфорд (1910 г.) пропускал через слой вещества (фольга) поток a-лучей и измеряя отклонение отдельных частиц после прохождения через фольгу. Обобщая результаты наблюдений Резерфордом было установлено, что тонкий металлический экран отчасти прозрачен для a-частиц, которые, проходя через листок, либо не изменяли своего пути, либо отклонялись на малые углы. Отдельные же a-частицы отбрасывались назад, как мячик от стены, будто встречали на своем пути непреодолимое препятствие. Так как отбрасывалось назад весьма небольшое число проходящих через фольгу a-частиц, то это препятствие должно занимать в атоме объем, неизмеримо малый даже по сравнению с самим атомом, при этом оно должно обладать большой массой, так как в противном случае a-частицы от него не рикошетировали бы. Таким образом, появилась гипотеза о ядре атома, в котором сосредоточена практически вся масса атома и весь положительный заряд. При этом становятся понятными отклонения пути большинства a-частиц на небольшие углы, под влиянием сил электростатического отталкивания со стороны атомного ядра. В дальнейшем было установлено, что диаметр ядра порядка 10–5 нм, а диаметр атома – 10–1 нм, т.е. объем ядра в 1012 раз меньше объема атома.

В модели атома, предложенной Резерфордом, в центре атома расположено положительно заряженное ядро, а вокруг него движутся электроны, число которых равно величине заряда ядра или порядковому номеру элемента, подобно планетам вокруг Солнца (планетарная модель атома). Развитая Резерфордом ядерная модель была крупным шагом вперед в познании строения атома. Она была подтверждена большим числом экспериментов. Однако в некоторых отношениях модель противоречила твердо установленным фактам. Отметим два таких противоречия.

Во-первых, планетарная модель атома Резерфорда не могла объяснить устойчивости атома. По законам классической электродинамики электрон, двигаясь вокруг ядра, неизбежно теряет энергию. С уменьшением запаса энергии у электрона радиус его орбиты должен непрерывно уменьшаться и в результате упасть на ядро и прекратить свое существование. Физически же атом представляет собой устойчивую систему и может существовать, не разрушаясь, чрезвычайно долго.

Во-вторых, модель Резерфорда приводила к неправильным выводам о характере атомных спектров. Спектры щелочных металлов оказываются сходными со спектром атомарного водорода, и анализ их приводил к заключению о наличие в составе атомов каждого щелочного металла одного электрона, слабо связанного с ядром по сравнению с остальными электронами. Т.е. в атоме электроны размещаются на не одинаковом расстоянии от ядра, а слоями.

Каждый вид атомов характеризуется строго определенным расположением линий в спектре, не повторяющихся у других видов атомов. Именно на этом основан метод спектрального анализа, с помощью которого были открыты многие элементы. Линейчатость атомных спектров противоречила законам классической электродинамики, согласно которой спектр атомов должен быть непрерывным в результате непрерывного излучения электроном энергии.

Модель строения атома водорода Бора. Так как законы классической электродинамики оказались не применимы для описания поведения электрона в атоме, Нильс Бор впервые сформулировал постулаты, основанные на законах квантовой механики.

1) В атоме водорода существуют орбиты, двигаясь по которым, электрон не излучает. Они называются стационарными.

2) Излучение или поглощение энергии происходит в результате перехода электрона с одной стационарной орбиты на другую. Удаленные от ядра орбиты характеризуются большим запасом энергии. При переходе от низших к высшим орбитам атом переходит в возбужденное состояние. Но в этом состоянии он может находиться недолго. Он излучает энергию и возвращается на исходное основное состояние.

При этом энергия кванта излучения равна: hn = EnEk,

где n и k – целые числа.

3) Электрон может вращаться вокруг ядра не по любым, а только по некоторым определенным круговым орбитам. Эти орбиты получили название стационарных .Стационарными являются орбиты, для которых выполняется условие , где me – масса электрона, u – скорость вращения, r – радиус орбиты, h – постоянная Планка.

Планк показал, что изменение энергии происходит не непрерывно (согласно законам классической механики), а скачкообразно, порциями, которые были названы – квантами. Энергия кванта определяется уравнением Планка:

E = hn, где h – постоянная Планка равная 6,63×10–34 Дж×с, n – частота излучения. Получается, что электрон обладает корпускулярными свойствами (масса, заряд) и Е=mс2 волновыми – частота, длина волны.

В связи с этим Луи де Бройль выдвинул идею о дуализме частиц и волн. Причем корпускулярно-волновой дуализм характерен для всех объектов микро- и макромира, только для макроскопических объектов преобладает один из наборов свойств, и мы говорим о них, как о частицах или волнах, а для элементарных частиц и те, и другие свойства проявляются совместно. Математический дуализм волна-частица выражается уравнением Луи де Бройля:

где λ − длина волны

h – постоянная Планка (6,63·10-34 Дж/с)

m − масса частицы

v − скорость частицы

Уравнение легко выводится, если в уравнение Планка

E = h· υ (υ - частота)

подставить значение E из уравнения Эйнштейна

Е = m ·с2

m · c2 = h · υ

υ = c/ λ

m · c2 = h · с/λ

m · c2 = h /λ

λ = h /m·с,

заменив с – (скорость фотона) на скорость любой микрочастицы v, получим:

λ = h /m · v

Э. Шрёдингер. Он ввел знаменитое уравнение, описывающее поведение электрона в атоме волновой функцией (пси-функция y). Квадрат ее модуля |y|2, вычисленный для определенного момента времени и определенной точки пространства, дает плотность вероятности обнаружения частицы в этой точке в данное время. Функцию y (предложенную Шрёдингером) можно определить путем решения квантово-механического уравнения Шрёдингера. Это уравнение в простейшем случае частицы, движущейся в потенциальном поле, может быть записано в виде:

где m масса частицы, U потенциальная энергия, E полная энергия, x, y, z декартовы координаты.

Введя, оператор Лапласа, учитывающего распределение волны в трехмерном пространстве: , получим уравнение Шрёдингера: . Значение функции y не имеет строгого физического смысла (уравнение убывающей экспоненты). А вот, произведение |y|2dV – характеризуют вероятность нахождения электрода в объеме пространства dV. Обычно записывают для электронной плотности r = 4pr2|y|2dr – вероятность того, что электрон находится на расстоянии r от ядра.

10.Энергетические уровни в атоме. Электронная структура атома. Строение электронного облака. Понятие об атомных орбиталях. Энергетические диаграммы и электронные конфигурации атомов водорода, гелия, лития, бериллия