Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка(ответы на экз вопросы).doc
Скачиваний:
111
Добавлен:
28.11.2021
Размер:
3.25 Mб
Скачать

21.Ионная связь. Поляризация и поляризующая способность ионов. Механизм образования, свойства. Водородная и металлическая связь.

 Ионная связь, она ничем принципиально не отличается от ковалентной связи. Движущей силой ее образования является все то же стремление атомов к октетной оболочке. Но в ряде случаев такая “октетная” оболочка может возникнуть только при передаче электронов от одного атома к другому. Поэтому ионная связь, в отличие от ковалентной, возникает только между атомами разного вида.

При образовании ионной связи атомы типичных металлов отдают электроны, а атомы типичных неметаллов принимают электроны.

В результате этих процессов атомы металлов превращаются в положительно заряженные частицы, которые называются положительными ионами, или катионами; а атомы неметаллов превращаются в отрицательные ионы – анионы.

Связь между ионами называется ионной связью.

Энергия, которая требуется для разрыва связи, называется энергией химической связи.

Рассмотрим конкретный пример: реакцию между атомами натрия (Z = 11) и фтора (Z = 9). При образовании связи между ними оба элемента приобретают внешнюю электронную оболочку благородного газа неона (Z = 10). Для того, чтобы убедиться в этом, надо записать электронные формулы всех трех элементов:

Na: 1s2 2s2 2p6 3s1

F: 1s2 2s2 2p5

Ne: 1s2 2s2 2p6

В электронных формулах нам важны только электронные конфигурации внешних уровней (они подчеркнуты).

Натрий, отдав фтору свой 3s1-электрон, становится ионом Na+ и остается с заполненной 2s22p6 оболочкой, что отвечает электронной конфигурации атома неона. Точно такую же электронную конфигурацию приобретает атом F, приняв один электрон, отданный натрием. Теперь это ион F. Разумеется, при этом ионы F и Na+ продолжают оставаться все теми же элементами фтором и натрием, потому что никакие электронные переходы не могут изменить природу элемента – число протонов в его ядре.

Νа0 – 1 е = Νа+ F0 + е = F

Νа+ + F = Νа F

Теперь в дополнение к ковалентной составляющей химической связи в молекуле Na+:F добавляется еще и электростатическое притяжение между ионами натрия и фтора. Это увеличивает прочность химической связи. Однако ковалентная составляющая (стремление к октету) продолжает играть большую роль и в ионных соединениях.

В отличие от ковалентной связи, ионная связь не обладает направленностью, Это объясняется тем, что электрическое поле иона обладает сферической симметрией, т. е. убывает с расстоянием по одному и тому же закону в любом направлении. Поэтому взаимодействие между ионами осуществляется одинаково независимо от направления. Система из двух зарядов, одинаковых по абсолютной величине, но противоположных по знаку, создает в окружающем пространстве электрическое поле. Это означает, что два разноименных иона, притянувшиеся друг к другу, сохраняют способность электростатически взаимодействовать с другими ионами. В этом состоит еще одно различие между ионным и ковалентным типами связи: ионная связь не обладает насыщаемостью. Поэтому к данному иону может присоединиться различное число ионов противоположного знака. Это число определяется относительными размерами взаимодействующих ионов, а также тем, что силы притяжения разноименно заряженных ионов должны преобладать над силами взаимного отталкивания, действующими между ионами одного знака.

.

Рис. Поляризация иона в электрическом поле.

Неполное разделение зарядов в ионных соединениях можно объяснить взаимной поляризацией ионов, т. е. влиянием их друг на друга, которое приводит к деформации электронных оболочек ионов. Причиной поляризации всегда служит действие электрического поля (см., рис., пунктиром показана деформация электронной оболочки иона в электрическом поле), смещающего электроны и ядра атомов в противоположных направлениях. Каждый ион, будучи носителем электрического заряда, является источником электрического поля. Поэтому, взаимодействуя, противоположно заряженные ионы поляризуют друг друга.

Наибольшее смещение испытывают при поляризации электроны внешнего слоя; в первом приближении можно считать, что деформации подвергается только внешняя электронная оболочка. Однако под действием одного и того же электрического поля различные ионы деформируются в разной степени. Иначе говоря, поляризуемость различных ионов неодинакова: чем слабее связаны внешние электроны с ядром, тем легче поляризуется ион, тем сильнее он деформируется в электрическом поле. У ионов одинакового заряда, обладающих аналогичным строением внешнего электронного слоя, поляризуемость возрастает с увеличением размеров иона, так как внешние электроны удаляются все дальше от ядра, экранируются все большим числом электронных слоев и в результате слабее удерживаются ядром. Так, у ионов щелочных металлов поляризуемость возрастает в ряду

Точно так же поляризуемость ионов галогенов изменяется в следующей последовательности:

Превращение атома в положительно заряженный ион всегда приводит к уменьшению его размеров . Кроме того, избыточный положительный заряд катиона затрудняет деформацию его внешних электронных облаков.

Поляризующая способность ионов, т. е. их способность оказывать деформирующее воздействие на другие ионы, также зависит от заряда и размера иона. Чем больше заряд иона, тем сильнее создаваемое им электрическое поле; следовательно, наибольшей поляризующей способностью обладают многозарядные ноны. При одном и том же заряде напряженность электрического поля вблизи иона тем выше, чем меньше его размеры

Металлическая связь.

Металлы, во-первых, отличаются от других веществ высокой электрической проводимостью и теплопроводностью, во-вторых, в обычных условиях являются кристаллическими веществами .

Из первого характерного свойства металла следует, что по крайней мере часть электронов может передвигаться по всему объему куска металла. Из второго свойства металлов следует. Что их атомы не связаны друг с другом локализованными двухэлектронными связями. Число валентных электронов атома металла недостаточно для образования подобных связей со всеми его соседями.

Природу химической связи и характерные особенности металлов можно объяснить на примере лития следующим образом. В кристалле лития орбитали соседних атомов перекрываются. Каждый атом предоставляет на связь четыре валентные орбитали и всего лишь один валентный электрон. Значит. В кристалле металла число электронов значительно меньше числа орбиталей. Поэтому электроны могут переходить из одной орбитали в другую. Тем самым электроны принимают участие в образовании связи меду всеми атомами кристалла металла. К тому же атомы металлов характеризуются невысокой энергией ионизации – валентные электроны слабо удерживаются в атоме, т.е. легко перемещаются по всему кристаллу. Возможность перемещения электронов по кристаллу определяет электрическую проводимость металла.

Водородная связь.

Водородная связь представляет собой результат электростатического притяжения положительно поляризованных атомов водорода к отрицательному полюсу полярных молекул.

Для возникновения водородных связей важно, чтобы в молекулах вещества были атомы водорода, связанные с небольшими, но электроотрицательными атомами, например: O, N, F. Это создает заметный частичный положительный заряд на атомах водорода. С другой стороны, важно, чтобы у электроотрицательных атомов были неподеленные электронные пары. Когда обедненный электронами атом водорода одной молекулы (акцептор) взаимодействует с неподеленной электронной парой на атоме N, O или F другой молекулы (донор), то возникает связь, похожая на полярную ковалентную.

Водородные связи между молекулами воды (обозначены пунктиром).

Учитывая заметную разницу зарядов на атомах Н и О соседних молекул, дополнительную прочность этой межмолекулярной связи придает притяжение разноименных зарядов. Водородные связи характерны для таких веществ, как вода H2O, аммиак NH3, фтороводород HF.

22.Химическая кинетика. Гомогенная и гетерогенная системы. Фаза. Гомогенные и гетерогенные реакции, их скорость (зависимость скорости от механизма реакции)

23.Энергетические диаграммы состояний энергии активации прямой и обратной реакции ( экзотермический и эндотермический процесс) Влияние концентрации на смещение равновесия ( отношение Псс).

24.Катализ. Гомогенный и гетерогенный катализ. Примеры. Цепные реакции.

25.Зависимость скорости химической реакции от температуры. Уравнение Аррениуса правило Вант-Гоффа. Энергия активации. Состояние реакционной системы (активированный комплекс переходное состояние) Зависимость скорости от концентрации (закон действующих масс)

26.Обратимые и необратимые химические реакции. Равновесие с точки зрения термодинамики и химическое равновесие с точки зрения кинетики. Химический потенциал.

27.Константа равновесия Кр - как важнейшая характеристика химического взаимодействия (Кр→∞,Кр→О) Смещение химического равновесия ( влияние температуры, концентрации) направление реакции, если Пс≥Кс как изменится при этом ∆Ğ.

28.Смещение химического равновесия. Принцип Ле-Шателье. Закон Вант-Гоффа (уравнение, выражающее зависимость температуры от энтальпии)Энергетические диаграммы экзотермической и эндотермической реакции.

Цепные реакции

Цепные реакции- это совокупность последовательно протекающих реакций, в которой реагентами очередного развивающегося процесса служат продукты предыдущего процесса.

Типичным примером цепной реакции может служить взрывоподобный процесс взаимодействия хлора с водородом, для развития которого реакционную смесь достаточно осветить на ничтожно малое время. Этот процесс начинается со стадии химического распада молекулы хлора на атомы при поглощении кванта света - зарождение цепи

С12 + hv=С1.+С1.

За этой стадией следует группа непрерывно повторяющихся реакций с участием активных частиц и образованием новых активных частиц без воздействия света – продолжение цепи.

Кроме этих реакций одновременно протекают процессы, которые приводят к исчезновению активных частиц – обрыв цепи

Реакции обрыва цепи могут проходить при столкновении активных частиц со стенками реакционного сосуда, при тройном соударении с частицей М, к которой переходит выделившаяся энергия, при взаимодействии с различными примесями, например, молекулами кислорода:

С1.+С1. +М =С12*

Н.2+М=НО2+ М*

Обратимые и необратимые реакции:

Необратимые – протекают до полного израсходования реагирующих компонентов, т.е. одного из реагирующих.

1) один из продуктов реакции удаляется из раствора в виде газа:

Zn + 4HNO3 = Zn(NO3)2 +2NO2 + 2H2O

2) один из продуктов реакции выпадает в осадок:

Ba(NO3)2 + H2SO4 = BaSO4 +2HNO3

3) образуется малодиссоциирующей вещество ( здесь вода)

КОН + НС1 = КС1 + Н2О

4) образуется комплексная соль:

СиSО4 +4 NН3 = [Си(NН3)4]SО4

5)выделение большого количества теплоты:

2Мg + О2 = 2МgО - ∆Н

6) окислительно-восстановительные реакции:

2 СrСI3 + 10 КОН + 3 Н2О2= 2К2СrО4+ 6КС1 + 8 Н2О

Обратимые реакции - химические реакции, протекающие одновременно в двух противоположных направлениях.

К обратимым физическим процессам относятся: растворение, испарение, плавление.

К необратимым – осаждение, конденсация, кристаллизация веществ.

В гомогенной системе реакция идет во всем объеме.

В гетерогенной системе реакция протекает только на поверхности раздела фаз

Скоростью химической реакции называют изменение количества реагирующего вещества или образующегося продукта в единице объема за единицу времени.

Для гомогенной (однофазной) системы реакционным пространством служит объем, и скорость v может быть выражена:

; ;;

где Dn – изменение количества вещества; t – время; Dc – изменение концентрации. В кинетике под реагентами понимают исходные вещества, а образующиеся в ходе реакции вещества – продукты.

Для гетерогенных систем (различные фазы) реакции протекают на поверхности раздела фаз, и скорость определяется количеством вещества, вступившего в реакцию или получившегося в результате реакции (Dn) за единицу времени (Dt) на единице поверхности раздела (S):

;;

Факторы, влияющие на скорость химических реакций.

1.      Природа реагирующих веществ. Большую роль играет характер химических связей и строение молекул реагентов. Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Так, для разрыва связей в молекулах H2 и N2 требуются высокие энергии; такие молекулы мало реакционноспособны. Для разрыва связей в сильнополярных молекулах (HCl, H2O) требуется меньше энергии, и скорость реакции значительно выше. Реакции между ионами в растворах электролитов протекают практически мгновенно.

Примеры

Фтор с водородом реагирует со взрывом при комнатной температуре, бром с водородом взаимодействует медленно и при нагревании.

Оксид кальция вступает в реакцию с водой энергично, с выделением тепла; оксид меди - не реагирует.

2.      Концентрация. С увеличением концентрации (числа частиц в единице объема) чаще происходят столкновения молекул реагирующих веществ - скорость реакции возрастает.

Закон действующих масс (К. Гульдберг, П.Вааге, 1867г.)

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

aA + bB + . . . ® . . . 

V = k • [A]a • [B]b • . . .

Константа скорости реакции k зависит от природы реагирующих веществ, температуры и катализатора, но не зависит от значения концентраций реагентов.

Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ. 

3.      Температура. При повышении температуры на каждые 10°C скорость реакции возрастает в 2-4 раза (Правило Вант-Гоффа). При увеличении температуры от t1 до t2изменение скорости реакции можно рассчитать по формуле:

 

 

(t- t1) / 10

Vt2 / Vt1

= g

 

(где Vt2 и Vt1 - скорости реакции при температурах t2 и t1 соответственно; g- температурный коэффициент данной реакции).

Правило Вант-Гоффа применимо только в узком интервале температур. Более точным является уравнение Аррениуса:

 

k = A • e Ea/RT

где

R - универсальная газовая постоянная [8,314 Дж/(моль • К) = 0,082 л •  атм/(моль • К)];

Ea - энергия активации, т.е. энергия, которой должны обладать сталкивающиеся молекулы, чтобы столкновение привело к химическому превращению.

А – перед экспоненциальный множитель, который характеризует константу скорости при нулевой энергии активации

К = Аехр и показывает число наиболее вероятных столкновений всех частиц соударяющихся в системе.

Множитель [-Еа/RТ] долю « удачных» столкновений, энергия которых превышает энергию активации Е*,

Энергию активации легко рассчитать, если известны константы скорости при разных температурах.

Разница в энергиях между исходным и переходным состоянием равна энергии активации. То есть, активные молекулы должны обладать энергией активации для осуществления взаимодействия для того, чтобы произошло ослабление связей в исходных веществах, для преодоления отталкивания между электронами в сближающихся молекулах, которое мешает их столкновению. Следовательно, энергия активации является одним из параметров, характеризующих скорость процесса. Чем больше энергия активации, тем меньше скорость процесса.

Фундаментальным представлением в теории химической кинетики является понятием об активном комплексе, включающее несколько отправных моментов.

а) не любое столкновение частиц в реальном объеме приводит к их взаимодействию, а лишь такое, при котором обеспечена выгодная пространственная ориентация, максимально сближающая ядра и электронные орбитали партнеров.

б) энергия соударения частиц должна быть достаточной для разрыва прежних и образование новых связей. Такой энергией обладают не все молекулы, а лишь определенная их часть, относимая к активным.

Та избыточная энергия, которой обладают активные частицы и благодаря которой становится возможной химическая реакция, называется энергией активации.

в ) «удачно» столкнувшиеся молекулы образуют активированный переходный комплекс, т.е. временное непрочное соединение энергии, в котором ослаблены и удлинены связи, разрываемые в ходе реакции. Ослабление и удлинение связей требует затраты энергии. Следовательно, кинетическая энергия соударений должна превышать энергию активации. Энергетическая диаграмма хода химического процесса имеет вид.

 

Экзотермическая реакция

Эндотермическая реакция

А - реагенты, В - активированный комплекс (переходное состояние), С - продукты.Чем больше энергия активации Ea, тем сильнее возрастает скорость реакции при увеличении температуры. 

     Поверхность соприкосновения реагирующих веществ. Для гетерогенных систем (когда вещества находятся в разных агрегатных состояниях), чем больше поверхность соприкосновения, тем быстрее протекает реакция. Поверхность твердых веществ может быть увеличена путем их измельчения, а для растворимых веществ - путем их растворения.

     Катализ. Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными, называются катализаторами. Механизм действия катализаторов связан с уменьшением энергии активации реакции за счет образования промежуточных соединений. При гомогенном катализе реагенты и катализатор составляют одну фазу (находятся в одном агрегатном состоянии), при гетерогенном катализе - разные фазы (находятся в различных агрегатных состояниях). Резко замедлить протекание нежелательных химических процессов в ряде случаев можно добавляя в реакционную среду ингибиторы (явление "отрицательного катализа"). 

Методы измерения скорости химической реакции.

В зависимости от способа измерения концентрации вещества методы измерения скорости делят на химические, физические, биохимические так например в выше указанной реакции можно получить данные определения скорости по изменению концентрации НС1 Методом кислотно-основного титрования - химический метод. Или по величине водородного показателя рН с помощью рН- метра можно определить изменение СНС1- физико-химический метод кроме того количество выделяющегося Н2 можно определить в л т.е. по объему или по р – физический метод.

К физическим методам относят и спектральные методы, основанные на измерениях спектров поглощения реагентов или продуктов в ультрафиолетовой видимой инфракрасной области.

Смещение химического равновесия. Принцип Ле-Шателье.

Если система находится в состоянии равновесия, т о она будет пребывать в нем до тех пор, пока внешнее условие сохраняются постоянно.

Если условия изменить, то система выйдет из равновесия- скорости прямого и обратного процессов изменятся по-разному.

Наибольшее значение имеет случай нарушения равновесия вследствие изменения

1) концентрации какого либо из веществ, участвующих в

равновесии.2) давление 3) температуры.

Химическое равновесие - состояние системы, в котором скорость прямой реакции (V1) равна скорости обратной реакции (V2). При химическом равновесии концентрации веществ остаются неизменными. Химическое равновесие имеет динамический характер: прямая и обратная реакции при равновесии не прекращаются.

Состояние химического равновесия количественно характеризуется константой равновесия, представляющей собой отношение констант прямой (K1) и обратной (K2) реакций.

Для реакции mA + nB « pC + dD константа равновесия равна

K = K1 / K= ([C]p • [D]d) / ([A]m • [B]n)

Константа равновесия зависит от температуры и природы реагирующих веществ. Чем больше константа равновесия, тем больше равновесие сдвинуто в сторону образования продуктов прямой реакции.

Способы смещения равновесия

Принцип Ле-Шателье. Если на систему, находящуюся в равновесии, производится внешнее воздействие (изменяются концентрация, температура, давление), то оно благоприятствует протеканию той из двух противоположных реакций, которая ослабляет это воздействие

1.      Давление. Увеличение давления (для газов) смещает равновесие в сторону реакции, ведущей к уменьшению объема (т.е. к образованию меньшего числа молекул).

2.      Увеличение температуры смещает положение равновесия в сторону эндотермической реакции (т.е. в сторону реакции, протекающей с поглощением теплот

Так синтез аммиака представляет собой экзотермическую реакцию.

N22 = 2NН3 + 92,3к∂ж

При повышении температуры равновесие смещается влево.

принцип Ле Шателье, в применении к химическим равновесиям можно сформулировать так:

Если на систему находящуюся в равновесии. Оказать какое-либо воздействие, то в результате протекающих в ней процессов равновесие сместится в таком направлении, что оказанное воздействие уменьшиться.

29.Тепловой эффект химического процесса. Тепловой эффект образования сложного вещества энтальпия образования элементных веществ. Стандартные изменения термодинамических величин сложных веществ.

30.Термодинамические реакции .Закон Гесса и следствия из него.

31.Обратимые необратимые в термодинамическом смысле процессы. Направление самопроизвольных процессов. Свободная энергия Гиббса, энтропия. Второе начало термодинамики.

32.Энтропия. Физический смысл. Формула Больцмана. Стандартная энтропия. Энтальпийные и энтропийные факторы.

Термохимические реакции. Закон Гесса и следствия из него.

Любой химический процесс можно разделить на две стадии:

1.- разрыв химических связей, во взаимодействующих частицах сопровождающихся поглощением ΔH>O энергии извне

(ΔH1=Hкон. –Hнач. >0) и повышением полной энергии системы;

2 – образование новых химических связей, освобождающее часть энергии и передающее ее в окружающую среду ΔH<O с понижением полной энергии системы.

ΔH2=Hкон. –Hнач. <0

ΔH>O эндотермический

ΔH<O экзотермический

ΔH=O нет обмена

Суммарный энергетический ΔH эффект химического процесса ΔH=0

ΔH=H2 –H1.

Если ΔH2>ΔH1 то ΔH>O и суммарный энергетический эффект химического процесса- положительный (эндотермический).

Если ΔH1>ΔH2 то ΔH<O следовательно суммарный энергетический эффект становится отрицательном и называется экзотермическим (при его реализации окружающие тела увеличивают свою энергию за счет системы). Окисление, например глюкозы кислородом происходит с выделением большого количества теплоты Q т.е. это процесс экзотермический и идет с уменьшением энтальпии (ΔH<O), а соответствующее уравнение записывается следующим образом: С6Н12О6 + 6О2= 6 СО2+ 6 Н2О ΔH= -2800 кдж.

Энергия освобождающаяся в результате химических реакций или при некоторых физических процессах ( конденсация пара в жидкость или кристаллизация жидкости ΔH<O и есть внутренняя энергия вещества и поэтому будет справедливо равенство

ΔU=ΔH

Таким образом, количество внутренней энергии содержащейся в веществах и освобождающейся в результате химических и физических превращений называется тепловым эффектом.

Тепловой эффект образования сложного вещества.

ΔHобр. в отличие от ΔH относится к образованию одного моля сложного вещества. Например

Н2 (г) + С12(г) = 2НС1 ΔH<O экзотермическая

Но при образовании одного моля вещества НС1

½ Н2 (г) + ½ С12(г) = НС1 ΔHобр.<O

Отсюда следует. что ΔH = 2ΔHобр.

ΔH зависит от температуры и давления в системах.

Для удобства сравнения введено понятие стандартного состояния вещества, т.е. такого, которое соответствует состоянию чистого продукта при давлении Р= 101,325 кПа и температуре Т= 298 К (250С) отнесенные к стандартным состояниям условий, изменения соответствующих термодинамических величин называют стандартными , их обозначения снабжаются верхним индексом 0:

ΔH0обр.- стандартное изменение энтальпии образования одного моля сложного вещества.

Стандартные изменения энтальпий сложных веществ приводятся в таблицах термодинамических величин.

Энтальпия образования С ;О2; Н2; и всех других элементных веществ, устойчивых при t = 298 К и Р= 101,325 кПа принимают равной нулю т.е. при стандартных условиях ΔHэ= 0

Основной принцип (закон), на котором основываются все термохимические расчёты установлен русским химиком Г. И. Гессом в 1840 году, (изучал тепловые эффекты различных реакций) который формируется следующим образом: суммарный тепловой эффект химического процесса зависит не от пути, а только от начального и конечного состояний системы.

ΔН= ΔН1+ ΔН2= ΔН3+ ΔН4+ ΔН5 – согласно закону Гесса.

Закон Гесса соблюдается только для процессов протекающих при Р=соnst; и V=соnst.

Из закона Гесса следует:

1.тепловые эффекты прямой и обратной реакции равны и противоположны по знаку:

ΔH1

А ↔ В ΔН1= - ΔН2

ΔH2

2.суммарный тепловой эффект кругового процесса равен нулю:

ΔН1+ ΔН2+ ΔН3+ ΔН4 =0

  1. тепловой эффект химической реакций равен разности сумм стандартных теплот образования продуктов реакции и исходных

А + В = С + Д ; ΔH

ΔH=[ΔH0обр.(С)+ ΔH0обр.(Д) ] - [ΔH0обр.(А)+ ΔH0обр.(В) ] или

ΔH=∑ΔH0прод. −∑ΔH0исх.

Или иначе говоря переход системы из начального состояния 1 с энтальпией Н1 в состояние 2 с энтальпией Н2 . Изменение энтальпии системы в результате этого перехода, называется энтальпией данной реакции и равно разности

ΔH=H2. −H1

А + В = С + Д

Н1 Н2.

Второе начало термодинамики. Свободная энергия Гиббса.

Изменение внутренней энергии для закрытой системы не может быть критерием самопроизвольного протекания реакций, следовательно, первое начало термодинамики недостаточно для решения вопроса о самопроизвольности.

Процесс называется самопроизвольным, если он осуществляется без каких либо воздействий из вне, т.е. система предоставлена самой себе.

Решение вопроса о самопроизвольности протекания процесса достигается с помощью второго начала термодинамики. Но, кроме того, здесь необходимо вспомнить понятия – обратимые и необратимые в термодинамическом смысле процессы.

Если система находится в равновесии , это состояние сохраняется сколько угодно долго, если не изменить внешние условия.( Если например внутри цилиндра с поршнем установилось равновесие с объемом V1, то это состояние равновесия сохранится до тех пор пока не изменится внешнее давление Р, т.е. при изменении (Р) идет процесс приводящий к изменению объема V2 , т.е. система переходит из начального состояния с объемом V1 в конечное с объемом V2.

Процесс называется термодинамически обратимым, если при переходе из начального состояния в конечное, все промежуточные состояния оказываются равновесными, т.е. обратимый процесс на любом этапе можно заставить идти обратно, изменив внешние условия.

Процесс называется необратимым, если хоть одно из промежуточных состояний не равновесно. С обратимостью связана такая важная проблема медицины - как консервация тканей при низких температурах.

В классической термодинамике под S понимают такое свойство системы, изменение которого при обратимом процессе, численно равно отношению теплоты к температуре протекания процесса :

ΔS=Q/T Р. Клаузиус

В термодинамике обратимым называется такой процесс, который протекает бесконечно медленно и при этом система все время находится в состоянии равновесия . (например испарение воды в условиях кипения).

Суть функции состояния (S), чтобы понять оперируют понятиями макро- и микро- состояний системы. Наиболее наглядным примером может служить коробка с ячейками, в которых находятся шары. Например, в 9 ячейках находится 4 шара – это модель макросистемы. Шары можно разложить по ячейкам 126 способами, каждый из которых является- микросостоянием.

Число микросостояний, посредством которых реализуется данное макросостояние, связано с термодинамической вероятностью. Вот S и определяется термодинамической вероятностью. S тем выше, чем больше способов реализации макросостояния. Поэтому и считают S- мерой неупорядоченности системы. Математическая связь S с числом микросостояний установил Л. Больцман.

S= k ln g U,V

где g – термодинамическая вероятность данного состояния системы при определенном запасе внутренней энергии и объеме. К = постоянная Больцмана = 1,38. 10-23 Дж/К

Возможность самопроизвольного протекания химического процесса или химической реакции в системе определяется совокупностью двух факторов:

- Стремление системы к состоянию наименьшей энергии

- Стремление системы достижения наиболее вероятного состояния

1. Мерой стремления системы к состоянию с наименьшей энергией служит – энтальпия (Н) ΔH→min

2. Мерой стремления системы к наиболее вероятному состоянию служит – энтропия (S) Δ S →max неупорядоченному состоянию.

Энтропия есть мера вероятности пребывания системы в данном состоянии или мера неупорядоченности.

Направление химических процессов характеризует изобарно-изотермический потенциал или свободная энергия Гиббса связанная с Н и S следующим соотношением. G=H- Т S

Физический смысл G заключается (раскрывается) следующим образом:

H- полная энергия системы

Т S- связанная энергия, которая ни при каких обстоятельствах не превращается в работу.

Т.о. G- характеризует энергетику системы, т.е. активность химических реакций. Чем больше G тем активнее химический процесс, тем максимальнее совершаемая им работа.

Отсюда следует, что G – это та часть энергии, которая превращается в работу.

Для процесса протекающего при Т = соnst P=const (изобарно изотермический) уравнение Гиббса принимает вид

Δ G=ΔH- ТΔ S уравнение Гиббса - Гельмгольца

Δ G- зависит от величины вклада, которые вносят энтальпийный и энтропийный составляющие. Т.к. во время химического процесса энергия Гиббса убывает, то по знаку Δ G можно судить о направлении химического процесса.

В состоянии равновесия G=const ΔG=Ο

ΔG< 0 в условиях самопроизвольности (т.о. реакция идет в прямом направлении)

ΔG>0 реакция самопроизвольно не протекает (идет в обратном направлении)

В изолированной системе нет обмена энергии с окружающей средой Δm=0 ΔU=0, следовательно ΔH=0 и в этой системе будут протекать реакции (процессы), которые вызывают только рост энтропии в этом суть второго начала термодинамики- одного из важнейших законов, живой и неживой природы.

Δ G=ΔH- ТΔ S

Чем больше Δ S тем меньше Δ G и реакция идет в прямом направлении.

Т.О. изменение энергии Гиббса может служить критерием обратимости.

В обратимых процесса

Qmin=ΔU-Amax

Amax = ΔU- Qmin

Максимально достижимый к п д характеризующий эффективность затрат внутренней энергии системы равен.

η макс макс / ΔU

Максимальная работа Амакс, которая может быть получена при данной убыли внутренней энергии ΔU достигается лишь в том случае, если этот процесс обратимый и при этом выделяется минимальная теплота Qmin или

ΔS=Qmin /T

Т.о. по ΔS можно прогнозировать направление самопроизвольных процессов ( только в изолированных системах).

В качестве критерия самопроизвольности в процессов в открытых и закрытых системах служит функция состояния системы- энергию Гиббса.

Изменение свободной энергии системы при изобарно- изотермическом процессе также подчиняется закону Гесса: ΔG=ΣGпрод.р. –ΣGи.в.

Для получения сравнимых данных характеризующих различные реакции, сопоставляют стандартные изменения ΔΗот;ΔSот;ΔGот; для простых и сложных веществ эти значения табулированы.

33.Учение о растворах. Общие свойства растворов. Классификация дисперсных систем. Истинные растворы. Концентрации растворов.

34.Способы выражения концентрации растворов: молярная, моляльная, нормальная, процентная, мольная доля.

35.Коллигативные свойства разбавленных растворов (осмос осмотическое давление, диффузия, закон Вант-Гоффа, законы Рауля.).

36.Роль осмоса и осмотического давления в биологических системах.(«Тургор», изотонические растворы, асмоляльность-, гипертонические, гипотонические растворы, лизис, гемолиз, плазмолиз) Использование явления осмоса в медицинской практике.(гипертонические повязки, действие слабительных).

Растворами называются гомогенные (т.е. однородные) смеси переменного состава из двух или более веществ. Наиболее распространенное агрегатное состояние растворов – жидкое.

Из двух или нескольких компонентов раствора растворителем является тот, который взят в большем количестве и имеет то же агрегатное состояние, что и раствор в целом

Важной количественной характеристикой растворов являются концентрация и растворимость. Под концентрацией понимается количество растворенного вещества в объеме раствора (растворителя). Под растворимостью понимается максимально возможное количество растворенного вещества в объеме (массе) растворителя до появления осадка (гетерогенная система, и есть граница раздела фаз). В случае ограниченной растворимости можно выделить растворы ненасыщенные, содержание растворенного вещества в которых меньше, чем максимально возможное при данных условиях; насыщенные, в которых данное вещество при данных условиях больше не растворяется, и пересыщенные, содержание растворенного вещества в которых больше, чем в насыщенном растворе при данных условиях (пересыщенный раствор можно получить, например, быстрым охлаждением раствора вещества, растворимость которого значительно повышается с ростом температуры).

Процесс растворения есть процесс самопроизвольного распределения частиц растворенного вещества между молекулами растворителя в результате физического и химического взаимодействия.

Современная теория растворов объясняет механизм процесса растворения как совокупность 3х стадий.

1 стадия. Ориентация молекул растворителя вокруг растворяемого вещества, их взаимодействие, приводящее к ослаблению связей внутри растворяемого компонента. Этот процесс называется сольватацией, а если растворитель вода –гидратацией. Сольватация зависит от температуры, природы растворителя и растворенного вещества.

11 стадия. Разрыв химической связи внутри молекул растворенного вещества и ориентация молекул растворителя вокруг образующихся частиц. Этот процесс называется диссоциацией, на нее влияет температура, природа взаимодействующих частиц.

Внешний энергетический эффект растворения определяется именно этой стадией. Если растворение происходит в неполярном растворителе, т о 11 стадия отсутствует.

Ш стадия – равномерное распределение сольватированных частиц растворенного вещества в объеме растворителя – диффузия – эта стадия зависит только от температуры.

Количественной характеристикой состава раствора является его концентрация, она показывает отношение количества растворенного вещества к общему количеству раствора и выражается различными способами.

Массовая доля ω – отношение массы растворенного вещества к массе раствора

ω =mв-ва/m +m0 m0- масса растворителя выражается в % .

При условии что плотность раствора, есть отношение его массы к объему то массовую долю можно связать с объемом раствора т.е. ρ= m+m0/ V следовательно

ρV=m+m0 ω=m /ρV .100%

Мольная доля N – отношение количества данного вещества к сумме количеств компонентов раствора, т.е. мольная доля растворенного вещества, например

N=n /n+n0 100%

где n, n0- количество растворенного вещества и растворителя.

Мольная доля растворителя N0 = n0 / n+n0 100%

Объемная доля φ –отношение объема растворенного вещества V к объему всей системы V+V0

Φ=V/V+V0 100% φ0 = V0/ V+V0 100%

ω,N,φ- безразмерные величины.

Молярная концентрация – отношение количества растворенного вещества к объему раствора.

См = n/V+V0 моль/л

Если учесть, что n=m/М, где m- масса растворенного вещества, М – его молярная масса, то

См = m/ М (V+V0) моль/л

Моляльная концентрация – отношение количества растворенного вещества к массе растворителя

Сm= n/m0 моль/кг

Зная, что n=m/М это выражение можно преобразовать:

Сm= m/М m0 моль/кг

Молярная концентрация эквивалента (нормальность)- отношение молей эквивалентов растворенного вещества к объему раствора Сn=nэ/ V+V0 моль/л Сn=m/Э V

Т =m/V+V0 г/мл

В разбавленных растворах неэлектролитов ослаблено взаимодействие между частицами растворителя и растворенного вещества и им можно пренебречь.

Свойства таких растворов называются коллигативными . они определяются только числом частиц в растворе и не зависят от их природы.

К таким свойствам относятся : изменение давления насыщенного пара над раствором, температура замерзания и температура кипения раствора (законы Рауля), явления осмоса (закон Вант- Гоффа).

В процессе растворения происходит самопроизвольное распределение частиц растворяемого вещества между молекулами растворителя – диффузия.

Процесс этот двусторонний и продолжается до тех пор пока существует градиент концентрации ∆С (выравнивание концентраций).

Если на пути движения частиц стремящихся занять весь объем, поместить полупроницаемую мембрану , процесс выравнивания концентраций станет односторонним: молекулы растворителя будут проникать через мембрану из раствора с меньшей концентрацией растворенного вещества в более концентрированный.

Процесс односторонней диффузии растворителя через полупроницаемую мембрану называется осмосом. Давление, которое надо приложить к системе, чтобы остановить в ней осмос, называется осмотическим давлением. Осмос такой же самопроизвольный процесс, что и диффузия.

Применив к явлению осмоса законы идеальных газов,

Вант-Гофф установил следующую зависимость:

Росм= СмRT закон Вант-Гоффа

Где Росм- осмотическое давление раствора с молярной концентрацией См при температуре Т, R- универсальная газовая постоянная.

Зная, что См = m/ М V

уравнение можно преобразовать Росм = mRT/МV

И использовать для определения молярной массы неизвестного вещества по осмотическому давлению: М= m RT / Росм V

Закон Вант-Гоффа- справедлив лишь при значениях См≤10-2 моль/л.

Явление осмоса играет важную роль во многих химических и биологических системах. Благодаря осмосу регулируется поступление воды в клетки и межклеточные структуры. Упругость клетки (тургор), обеспечивающая эластичность тканей и сохранение определенной формы органов, обусловлена осмотическим давлением. Животные и растительные клетки имеют оболочки или поверхностный слой протоплазмы, обладающие свойствами полупроницаемых мембран. При помещении таких клеток в растворы с различной концентрацией наблюдается осмос.

Растворы , имеющие одинаковое осмотическое давление, называют изотоническими.

Изотонические растворы содержат одинаковое количество осмотически активных частиц.

Количество осмотически активных частиц в растворе выражается через осмомоляльность. Эта величина определяется концентрацией всех содержащихся в растворителе осмотически активных частиц (моль/кг)

При помещении клеток в изотонический раствор клетки сохраняют свой размер и нормально функционируют.

При помещении клеток в гипотонический раствор вода из менее концентрированного внешнего раствора переходит внутрь клеток, что приводит к их набуханию, а затем к разрыву оболочек и вытеканию клеточного содержимого . Такое разрушение клеток называют лизисом.

В случае эритроцитов этот процесс называют гемолизом. Кровь с клеточным содержимым, выходящим наружу при гемолизе, за свой цвет называется лаковой кровью.

При помещении клеток в гипертонический раствор вода из клеток уходит в более концентрированный раствор и наблюдается сморщивание (высушивание) клеток. Это явление называется плазмолизом.

Изотонический раствор NаС1 (0,9%)

Гипотонический раствор NаС1 (0,1%)

Гипертонический раствор NаС1 (2%)

Давление пара над жидкостью, когда скорость испарения равна скорости конденсации (равновесие на границе раздела фаз), называется давлением насыщенного пара.

Величина относительного понижения давления пара (депрессии) над раствором по сравнению с чистым растворителем пропорциональна концентрации растворенного вещества (закон Рауля):

,

где P0 – давление пара над чистым растворителем, P — давление пара над раствором, N2 – мольная доля растворенного вещества.

У закона Рауля есть два следствия, связанные с кипением и замерзанием (отверждением) растворов по сравнению с растворителем.

Повышение температуры кипения растворов, по сравнению с растворителем называется эбулиоскопией, а математически выражается формулой:

DTкип = KE×Cm,

где KEэбулиоскопическая постоянная для данного растворителя, Сmмоляльная концентрация. Аналогично для замерзания растворов – криоскопия и уравнения для температуры замерзания раствора по сравнению с чистым растворителем и имеет вид:

DTзам = KE×Cm,

где КК – криоскопическая постоянная. Методами эбулиоскопии и криоскопии можно, например, определить молекулярную массу неизвестного вещества. Как известно, если к g1 г растворителя добавить g2 г растворенного вещества, то моляльная концентрация будет равна:

,

где M – молекулярная масса растворенного вещества.

Тогда

или