Скачиваний:
64
Добавлен:
19.01.2022
Размер:
4.31 Mб
Скачать

Спектры т-финитных сигналов

Т-финитными называют ограниченные по времени сигналы. По определению они не могут быть периодическими и, следовательно, к ним не применимо разложение в ряды Фурье.

Чтобы получить адекватное описание таких сигналов в частотной области используют следующий прием. На первом этапе от заданного сигнала x(t), имеющего начало в точке t1 и конец в точке t2 переходят к сигналу xп(t), являющемуся периодическим повторением x(t) на бесконечной оси времени с периодом . Сигнал xп(t) можно разложить в ряд Фурье

,

где .

Введём в рассмотрение текущую частоту и спектральную плотность амплитуд .

Тогда .

Исходный сигнал x(t) можно получить из xп(t) в результате предельного перехода Т  .

При этом

, ,    , ,

Т аким образом, для описания спектра финитного сигнала приходим к известному в математике интегральному преобразованию Фурье:

– прямое,

– обратное.

В данном случае (и в дальнейшем) комплексную функцию записали в виде , как это принято в научно-технической литературе.

Из полученных соотношений следует, что спектр Т-фи- нитного сигнала сплошной. Он представляет собой совокупность бесконечного числа спектральных составляющих с бесконечно малыми амплитудами , непрерывно следующих по оси часты. Вместо этих бесконечно малых амплитуд используют спектральную функцию (спектральную плотность амплитуд)

,

где – амплитудный спектр,

– фазовый спектр.

Выводы

  1. Математическим аппаратом спектрального анализа Т-финитных сигналов является интегральное преобразование Фурье.

  2. Спектры Т-финитных сигналов сплошные и описываются непрерывными функциями частоты в виде модуля спектральной плотности амплитуд (амплитудный спектр) и её аргумента (фазовый спектр).

Свойства преобразования Фурье

  1. Прямое и обратное преобразование Фурье являются линейными операторами, следовательно, действует принцип суперпозиции. Если , то .

  2. Прямое и обратное преобразование Фурье являются взаимно однозначными.

  3. Свойство запаздывания.

Если , то

(в данном случае использованы подстановки: ).

  1. Спектральная функция δ-функции.

Используя общее выражение спектральной функции и фильтрующее свойство δ-функции, получим

.

  1. Спектральная функция комплексного гармонического сигнала .

(2.5)

Используя одно из определений δ-функции

и выполняя в нём взаимную замену t и  (или f), получим

и .

Сопоставляя полученный результат с (2.5), имеем

(2.6)

  1. Скалярное произведение комплексных сигналов в спектральной области. Пусть и – комплексные функции на интервале (–T/2, T/2). Их скалярное произведение

Из полученного результата для вещественных функций вытекает равенство Парсеваля (обобщённая формула Рэлея)

,

где – энергия сигнала ,

а – спектральная плотность энергии.

Для сигналов x(t), заданных на бесконечной оси времени (–,+), с , но имеющих ограниченную мощность , вместо спектральной плотности энергии можно использовать спектральную плотность мощности (энергетический спектр)

.

Тогда , т.к.

и – чётные функции, – односторонняя спектральная плотность мощности (энергетический спектр).

Соседние файлы в предмете Обнаружение и распознавание сигналов