Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
уч пос.Физика ч. 1 у.doc
Скачиваний:
240
Добавлен:
12.02.2016
Размер:
4.66 Mб
Скачать

§ 32. Теплоємність

Теплоємністю називають кількість теплоти, яка необхідна для нагрівання тіла на 1 градус.

Питома теплоємність речовини - величина рівна кількості теплоти, яка необхідна для нагрівання 1 кг речовини на 1 К

(2.40)

Одиниця питомої теплоємності (Дж/(кг·К)

Молярна теплоємність - величина рівна кількості теплоти, яка необхідна для нагрівання 1 моля речовини на 1 К

(2.41)

Одиниця молярної теплоємності (Дж/(моль·К). Питома теплоємність пов'язана з молярною співвідношенням:

Cm=c·M. (2.42)

Розрізняють молярні теплоємності при сталому об'ємі і сталому тиску Cv і Cp

(2.43)

(2.44)

Порівнюючи теплоємності Cv і Cp отримаємо:

СРv+R. (2.45)

Цей вираз називається рівнянням Майєра. З нього виходить, що Ср завжди більша за Сv на величину універсальної газової сталої R.

З цього можна визначити фізичний зміст універсальної газової сталої R. Вона чисельно дорівнює роботі ізобарного розширення одного моля ідеального газу при нагріванні його на 1°.

При розгляді термодинамічних процесів важливо знати характерне для кожного газу відношення Ср до Сv:

(2.46)

Згідно класичної теорії, теплоємність газів не залежить від температури проте дослід доводить, що це не так.

Сv

ΔT3

ΔT2

0

ΔT1

T

Рисунок 2.38.

На рисунку 2.38. показана експериментальна залежність Сv для водню. Вивчення цієї залежності показує, що в температурних інтервалах Т1, Т2, Т3 теплоємність не залежить від температури, але в цілому збільшується з підвищенням температури. Такий хід залежності можна пояснити, відмовившись від закону про рівномірний розподіл енергії за ступенями свободи молекул. Можна припустити, що число ступенів свободи збільшується з підвищенням температури. При низьких температурах (Т1) енергія розподіляється тільки між ступенями свободи поступального руху Сv=3R/2. При середніх температурах (Т2) молекули починають обертатися Сv=5R/2. При подальшому підвищенні температури "збуджуються" і ступені свободи коливального руху. При високих температурах (Т3) Сv=7R/2. Неточність закону про рівномірний розподіл енергії по ступенях свободи молекул пояснюється тим, що рух молекул не підпорядковується законам класичної механіки і класичної статистики. Залежність Сv від Т пояснює квантова теорія теплоємкостей.

§ 33. Перший закон термодинаміки для різних термодинамічних процесів

Розглянемо перший початок термодинаміки для ізопроцесів.

Якщо термодинамічний процес відбувається при постійній температурі T=const (ізотермічний процес) внутрішня енергія газу не змінюється. Тоді кількість теплоти, що передається газу витрачається на виконання роботи проти зовнішніх сил.

U =0, Q = А, (2.47)

Якщо термодинамічний процес відбувається під постійним тиском P=const (ізобарний процес)

Q = ∆U+ А. (2.48)

Цей вираз можна представити у такому вигляді:

, але , тоді

з останнього виразу слідує, що при ізобарному процесі

При ізобарному розширенні Q > 0 - тепло поглинається газом, і газ здійснює позитивну роботу. При ізобарному стисканні Q < 0 - тепло віддається зовнішнім тілам. В цьому випадку A< 0. Температура газу при ізобарному стисканні зменшується, T2 < T1; внутрішня енергія убуває, ΔU < 0.

Якщо термодинамічний процес відбувається при постійному об'ємі V=const (ізохорний процес), тоді:

А =0, Q = ∆U, (2.49)

Кількість теплоти Q, отримана газом в процесі ізотермічного розширення, перетворюється на роботу над зовнішніми тілами. При ізотермічному стисканні робота зовнішніх сил, проведена над газом, перетворюється на тепло, яке передається навколишнім тілам.