Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

книги / Английский язык

..pdf
Скачиваний:
12
Добавлен:
12.11.2023
Размер:
16.74 Mб
Скачать

communication with the Apollo while both ships were over the Mediterranean Sea. In the 36th orbit, at 19 hours 12 minutes Moscow Time, three minutes ahead of schedule, the Soviet and American spaceships, launched'from different continents, docked for the first time. In both Mission Command Centres, in Moscow and Houston press centres, scientists, specialists and journalists applauded this historic event.

34. Orbital Stations

Long-standing orbital stations will beyond any doubt be general-purpose spacecraft that will solve a wide range of scientific and technological problems. This does not mean, however, that no orbital stations can be specialized. Those whose mission is to study the Earth’s resources will be put into relatively low orbits to make the studies as effective as possible.

On the contrary, astronomic and radioastronomic stations would be' more, effective at orbits of tens and hundreds of thousands kilometers. Lunar orbital stations would be very useful in exploring the Moon, the space around it and performing astrophysical observations and landing special-purpose modules periodically on the Moon.

Presumably, small stations will be put into orbit. Their crew

will be three

to twelve and they will stand on

the orbit

from

a month to a

year or more. They will incorporate the experience

gained in

construction of spacecraft and their

systems

tested

in orbital

and

lunar flights.

 

 

The well-tested modules of spacecraft and stages of boosters will be the constructing blocks of such stations. This does not preclude the development of structures specifically intended for orbital stations. These may be launched already assembled, by one booster or in parts to be docked in space. The crew may be delivered by a transportation vehicle that would also bring relief crews. The. station and the vehicles should, of course, have the docking assemblies. Medical and biological experiments should be condueted in such stations to develop the requirements to the design and learn the basic characteristics or large long-standing orbital stations.

The next stage will evidently be large long-standing orbital stations with the crew of 12 to 20, of modular design and assembled in a circum-earth orbit and intended to stay in orbit up to 10 years long.

We^can contemplate super stations with the crew of 50 to 70 and later 100 to 120.

At the same time special-purpose unmanned scientific orbital stations are feasible that would be periodically visited by

161

personnel that would adjust and check the state of the hardware,

replace

the

magnetic and

photographic films

with

the records

of scientific

data.

American Rockwell

and

McDonnell

The

designs of North

Douglas on contract with NASA are examples of multipurpose

orbital stations. These would carry a crew of

12 and serve

for

10 or more years. Provisions

should be made

for

assembly

of

a large base made of two or

more

stations at

the

altitude

of

about 500 km to carry 50 and

later

100 men.

The

preliminary

design of North American Rockwell envisages a station weighing 54 tons with useful capacity of 700 cubic meters. The station is to consist of five modules. Five airlock compartments will serve for supply vehicles to berth. The power plant will generate 25 kilowatts with solar panel of total area about 900 square meters as power sources.

The design of McDonnell Douglas envisages a station with the useful volume of over 300 cubic meters made of three basic modules and a compartment for gas and liquid storage.

Super stations for the crew of 50 to 100 men are under consideration in McDonnell Douglas and Grumman Aerospace. The former has made a preliminary design of a base for 50 men

with the weight of 450 tons and useful volume

of

2700

cubic

meters and the length of the central

unit

equal

to

114 meters.

To obtain artificial gravity the station

is to

rotate at

the

rate of

3.5 revolutions per minute along the longitudinal axes of the central unit. The power is to be supplied from a nuclear reactor.

Grumman Aerospace has worked out a design of a base for

50 to 100

men.

This

will

have

a central

module

and

three

peripheral

modules

with

10

meters in

diameter

each.

The

station is

to rotate along the

longitudinal

axis; artificial gravity

is to be created

in the peripheral modules.

 

 

 

 

Many

other

schemes have

been

described

in the

literature.

A major problem is to select the optimal shape and the* assembly technique. To assemble a station of several standard units is a progressive approach. The shape of a station with artificial gravity may be either toroidal, or beamed, or a hub with blades, or star-like, etc. Another major problem is to ensure the hermetization of compartments so as to ensure the reliability and security, and make the service and supply as convenient as possible.

One important thing is to create supply craft that should bring a relief of the crew, all kinds of goods, ensure transporta­ tion between stations and rescue in case of emergency. Some designs envisage special workshop compartments for the maintenance personnel to examine the surface of the station and its external equipment to detect parts for repair or replacement. Such a workshop should be highly automated and have automatic controllers and instruments, welding equipment,

162

manipulators and other facilities for a cosmonaut to work in open space.

Future supply spacecraft must be reusable and ensure atmospheric landing with small overloads. A possible shape is a delta-winged vehicle. For large orbital stations it is important to have facilities for the docking of several supply ships simultaneously. Provisions must be made to rescue the crew in emergency situations. Special on-board shelters might be made for the crew to await the supply ships if the vehicles docked to the stations cannot ensure a safe return. Another possibility is to have special emergency vehicles docked to the station.

35. The Space Shuttle System

The current average cost of transporting a pound of payload into Earth orbit is approximately two thousand dollars. Goal of the Space Shuttle programme is development of a system that will drastically reduce this cost. The basic shuttle mission is to transport payloads and passengers to orbit. This overall assignment covers a multitude of tasks, including:

1. Placing civilian and military satellites in space—lessening the need for the current stable of launch vehicles and for the weight and size limitations on payloads; satellites can be bigger and heavier, up to any size and shape that will fit the orbiter’s 15 by 60 ft cargo bay and 65,000 lb capabilities.

2. Retrieving malfunctioning satellites and repairing them in orbit or returning them to Earth — eliminating the requirement to

build-in expensive long-life .reliability

before

launch,

and

the

necessity of writing-off a multimiliion-dollar

satellite

because

of

a fault which develops after it goes into orbit.

for assembly

or

3. Carrying sections of spacecraft to orbit

for launch

in space, such as modules

for

a

space

station

or

vehicles for

planetary probes — eliminating

the need

to

develop

special-purpose launch vehicles for such purposes.

4.It also will be able to carry fuel to orbit for spacecraft and satellites, and can be used for space rescue missions.

5.In addition, the orbiter can be modified for missions of up to 30 days to serve as a short-duration space station.

It will be able tp take into space whole laboratories or sensor

systems for performing such tasks as crop and resources surveys, or special weather studies. Because of its flight characteristics, shuttle passengers do not have to be astronaut-trained. This means, for example, that the world’s leading geologist or minerologist, could go into space, perform his experiment and then return to Earth to put the data to immediate use.

36. Space Future

The creation of orbiting space stations is an important stage in the development of cosmonautics, Salyut-type stations can

163

operate automatically or manned; they make possible prolonged observations in many scientific disciplines. Instead of having separate research tasks the stations can perform a wide range of integrated studies, with human participation, of near-Earth space, solar processes, distant objects'in the Universe, the Earth and its atmosphere and natural resources.

An extensive research programme can be carried out on space Stations, manned fry 2 to 3 people at time. The high ^degree of automatic operation of the station, combined with its excellent interaction with the Flight Control Centre, allows this to be achieved by a small crew.

In the meantime, scientists and specialists from a number of countries are working on problems connected with the develop­ ment of even larger orbiting stations. In principle there are three methods:

1. Space stations can be injected into orbit in a fully

assembled state, as

it is done today. Naturally,

the

performance

of the carrier rocket

puts limits on the station’s

size

and weight.

2.

Stations

can

be designed in modules,

each

of which

is

sent

into orbit

by- a separate carrier rocket.

The

modules

are

then

docked together to form the space station.

 

 

 

 

3.. Smaller units, assemblies, equipment and instrument modules are put into an “assembly” orbit by separate carrier rockets of different performance capability, and assembly is done with the help of cosmonauts and a special craft equipped for this purpose.

One may assume that in future, as experience accumulates, large orbiting stations, assembled in one of the forementioned ways, will be considered useful, with a life of up to 10 years and crew exchanges of 12-20 people. In principle this can be envisaged in the foreseeable future. However, will it be neces­ sary? The development and creation of such expensive objects will be useful only when the possibilities of stations with small crews have been exhausted, and when bigger units, are justified by economic, scientific and technological considerations. In the far distant future one could envisage extra-large multi-purpose orbital bases for crews of 50-70 people or even 100 or more.

Of further interest is the creation of specialized .unmanned scientific orbiting stations which are periodically visited by cosmonauts for purposes of checking and adjusting the scientific equipment, changing tapes and films and repairing or replacing items of equipment.

How often should crews be replaced? That must still be determined. We know now that man can stand weightlessness and other conditions of the space environment for weeks and months on end without harm to his health. To what extent this period can be prolonged by training, special equipment and exercises in space remains to be seen. The human organism

164

“gets accustomed” to space life so easily that a return to Earth is the real test. Therefore, at present, crews will change fairly frequently. Later, large comfortable long-term stations will have artificial gravity. Such projects are under discussion by specialists in various countries.

Artificial gravity can be achieved in only one way, as К. E. Tsiolkovskiy pointed out long ago—by rotation. Rotation would cause difficulties for docking, astronomical observations, etc; such problems had still ’ to be investigated from the engineering, medical and economic viewpoints.

What will the future “transport craft” and rescue craft be like? It is necessary to have reusable transport craft with high aerodynamic qualities for re-entry. They will be able to land on a cosmodrome. A delta-wing craft may be one of the configura­ tions used. It is important to' have space stations to which several transport craft caiudock.

Rescue is a serious problem. It may be that space stations will have special “refuges” in which cosmonauts can await the arrival of a rescue craft. The Soviet-U. S. agreement in coordinating approach and docking is a large step in the development of rescue facilities.

Space station refuges must be provided with effective radiation protection in case of unexpected solar flares. The solar watch service and on-board instruments can give cosmonauts enough advance warning to enter the refuge.

What are the problems of creating large space stations? There are many problems such as the optimum shape and method of orbital assembly. There is also the question of a “rational” mooring and docking method. Of interest is the use of a space

tug

for

assembling units in space. A tug

could, with

its

automatic

systems, search, capture and propel

a

unit to

the

assembly

point. A tug could

be autonomous — remotely control­

led

from

the ground — or it

may contain a

crew.

Automatic

control systems must be developed for the assembly of space stations in orbit, as well as for quality checks of J such assembly procedures. It is necessary to work out the efficient combination of manual operation by cosmonauts, remote-control manipulators and automatic control systems. The development of a special automated station for assembly and servicing may be of interest, designed not only for the assembly of a space station

but for its

external

inspection,

for repairs and spare parts

replacement

and

“for special

cybernetic systems — space

robots.”

Today these problems seem to be very complex. At present orbital stations with crews of 2-3 are capable of carrying out the space research programme successfully. The creation of large stations with bigger crews is the business ol future decades,

СПИСОК НЕКОТОРЫХ НАИБОЛЕЕ УПОТРЕБИТЕЛЬНЫХ СУФФИКСОВ И ПРЕФИКСОВ АНГЛИЙСКОГО ЯЗЫКА

 

 

 

Суффиксы

имен

существительных

- a g e

 

-епсе

tankage

 

емкость

-апсе,

distance

 

расстояние

- atlon

 

difference

 

различие

 

consideration

рассмотрение

-е г

 

 

diffuser

 

диффузор

- ing

 

 

launching

 

пуск

- ion

 

 

ignition

 

зажигание

- 1st

 

 

scientist

 

ученый

- i t y

 

 

reliability

 

надежность

-m en t

 

improvement

улучшение

- or

 

 

injector

 

форсунка

- ship

 

 

relationship

 

отношение

- иге

 

 

structure

 

конструкция

 

 

 

Суффиксы имен

прилагательных

able,

-Ible

acceptable

 

приемлемый

al

 

 

negligible

 

незначительный

-ent

final

 

 

окончательный

ant,

distant

 

отдаленный

ful

 

 

different

 

различный

 

 

powerful

 

мощный

1c

 

 

electric

 

электрический

ive

 

 

explosive

 

взрывчатый

less

 

 

weightless

 

невесомый

otis

 

 

various

 

различный

 

 

 

Суффиксы имен

числительных

teen

 

 

fifteen

 

пятнадцать

th

 

 

fifteenth

 

пятнадцатый

ty

 

 

fifty

 

 

пятьдесят

 

 

 

Суффиксы

глаголов

 

ate

 

 

(to)

accelerate

ускорять

en

 

 

(to)

weaken

 

ослаблять

!fy

 

,

(to)

simplify

упрощать

Ize,

-Ise

(to)

oxidize

 

окислять

 

 

 

(to)

organise

организовывать

166

 

Суффиксы наречий

 

- ly

slowly

медленно

-w a rd (s)

forward

вперед

 

Префиксы

 

de-

(to) decelerate

dis-

discharge

in-, 1ш-, ir-

incorrect

 

impossible

 

irreversible

lnter-

intercontinental

over-

(to) overcool

post-

post-launch

pre-

prelaunch

re-

(to) recharge

sem i-

semtactive

super-

superconductive

•un

unreliable

замедлять (с р . (to) accelerate ускорять) разряд {ср. charge заряд) неправильный {ср. correctправильный) невозможный {ср. possible возможный) необратимый {ср. reversible обратимый) межконтинентальный {ср. continental

континентальный)

переохлаждать {ср. (to) cool охлаждать) посленусковой предпусковой

перезаряжать {ср. (to) charge заряжать) полуактивныЙ {ср. active активный) сверхпроводящий {ср. Conductive про­

водящий)

ненадежный {ср. reliable надежный)

КРАТКИЙ ГРАММАТИЧЕСКИЙ СПРАВОЧНИК

У Р О К 1

§ Г Времена группы Continuous

Времена этой группы обозначают действие, которое п р о д о л ж а е т с я в определенный момент или отрезок времени в настоящем, прошедшем или

будущем.

 

 

 

 

 

 

 

 

 

ся

Признаками времен группы Continuous в действительном залоге являют­

сочетания

вспомогательного

глагола tobe в

соответствующем

времени

и причастия 1

смыслового глагола.

 

 

 

 

 

 

 

 

Д е й с т в и т е л ь н ы й з а л о г

 

 

 

 

 

 

 

Present

Continuous

 

 

 

The

engineers

 

are

testing

a

new

Инженеры

сейчас

испытывают но-

engine now.

 

 

 

 

вый двигатель.

 

 

 

 

 

 

 

Past Continuous

 

 

 

The

engineers

 

were

testing

a^ new

Инженеры испытывали новый двига-

engine from

7 till

10 o’clock."

 

тель c

7 до 10 часов.

 

 

 

 

 

 

Future

Continuous

 

 

 

The engineers will be testing a new

Инженеры

будут испытывать

новый

engine from 8 till 11 o’clock.

 

двигатель c 8 до

И часов.

 

 

Признаками

времен группы

Continuous в страдательном

залоге являют­

ся сочетания вспомогательного глагола to be в форме Continuous и причастия

11

смыслового

глагола.

 

 

 

С т р а д а т е л ь н ы й з а л о г

 

 

Present

Continuous

A

new engine

Is being tested in the

В лаборатории испытывается новый

 

laboratory.

 

двигатель,

168

 

 

Past Continuous

A new engine

was being tested

in the В лаборатории испытывался новый

laboratory.

 

двигатель.

Future Continuous в страдательном залоге не употребляется.

§ 2. Времена группы

Perfect

 

Времена этой группы обозначают

действие, п р е д ш е с т в у ю щ е е

тому

или иному моменту. В группе времен

Perfect

три времени — настоящее,

про­

шедшее и будущее. В технической литературе наиболее часто встречается

настоящее и прошедшее перфектное время.

 

 

 

Признаками времен группы Perfect в действительном залоге являются

сочетания вспомогательного

глагола

to have в

соответствующем

времени

и причастия II

смыслового

глагола.

 

 

 

 

 

 

Д е й с т в и т е л ь н ы й з а л о г

 

 

 

 

 

Present Perfect

 

 

The

engineers

have

tested a

new

Инженеры испытали новый двигатель,

engine.

 

 

 

 

 

 

 

 

 

 

 

 

Past

Perfect

 

 

The

engineers

had

tested

a

new

К концу недели инженеры испытали

engine by the end of the week.

новый

двигатель.

 

 

Следует отметить,

что

сказуемое

как в форме Present, Perfect,

так и в

>форме Past Perfect на русский язык обычно переводится глаголами прошед­ шего времени совершенного вида, чем подчеркивается завершенность дей­ ствия.

Признаками времен группы Perfect в страдательном залоге являются сочетания вспомогательного глагола to be в форме Perfect и причастия II

смыслового глагола.

 

 

С т р а д а т е л ь н ы й з а л о г

 

Present

Perfect

The station

has been placed into а

Станцию вывели на околоземную op-

near-earth

orbit.

биту.

 

Past Perfect

The station

had been placed into а

К б часам станцию вывели на около-

near-earth

orbit by 6 o’clock.

земную орбиту.

§3. Особенности перевода некоторых глаголов

встрадательном залоге

Если в английском предложении после сказуемого, выраженного глаго­ лом в форме страдательного залога, стоит предлог, не относящийся к сле­ дующим за ним словам, то при переводе соответствующий русский предлог ставится перед тем словом, которое в английском предложении является -подлежащим:

7 П, И. Старостин

169

Any aircraft is acted upon by the aerodynamic forces.

The first

space

flight

was

much

spoken

about

in the

whole

world.

На любой атмосферный летательный аппарат действуют аэродинамиче­ ские силы.

Опервом космическом полете много говорили во всем мире.

Необходимо запомнить значения глаголов to act on (upon) «действовать на»; to deal (dealt; dealt) with «иметь дело с», «рассматривать»; to refer to «ссылаться на», «говорить о»; to speak (spoke; spoken) about (of) «гово­ рить о».

При переводе глаголов в форме страдательного залога, которым в рус­ ском язь/ке соответствуют глаголы, требующие предложного дополнения, предлог ставится перед словом, которое в английском предложении является подлежащим, а все предложение переводится на русский язык действитель­ ным залогом:'

The test

of the engine was followed

За испытанием двигателя последова-

by the

discussion of its advantages.

ло обсуждение ere преимуществ.

Необходимо запомнить значения глаголов to affect «влиять на», «дейст­ вовать на»; to influence «влиять на»; to follow «следовать за».

У Р О К 2

§ 4. Способы выражения модальности

 

Д о л ж

е н с т в о в а н

и е

выражается модальным глаголом must с по­

следующим

инфинитивом

в форме действительного или страдательного зало­

га

без частицы to, а также

глаголами to be и to have

в соответствующем ли­

це

и времени с последующим инфинитивом в тех

же залоговых формах

с частицей to. В простых предложениях глагол should с последующим инфи­ нитивом в тех же залоговых формах без частицы to также выражает д о л ­ ж е н с т в о в а н и е :

The cosmonaut was to test the new automatic equipment of the space­ craft.

The payload will have to follow the predetermined trajectory.

A number of problems had to be solved in time.

They should repair the propellant tanks.

Космонавт должен был испытать но­ вое автоматическое оборудование космического летательного аппа­ рата.

Полезная нагрузка должна будет следовать по заданной траектории.

Нужно было вовремя решить ояд проблем.

Им следует отремонтировать топлив­ ные баки.

С п о с о

б н о с т ь , в о з м о ж н о с т ь выражается

модальным глаголом

can (could)

с последующим инфинитивом в форме

действительного или

страдательного залога без частицы to, а также глагольным сочетанием to be able в соответствующем лице и времени с последующим инфинитивом в тех же залоговых формах с частицей to:

Some parts of the engine could be replaced.

The designer will be able to improve the operation of the engine.

Можно было заменить некоторые де­ тали двигателя.

Конструктор сможет улучшить рабо­ ту двигателя.

В о з м о ж н о с т ь , д о п у с т и м о с т ь

выражается модальным глаголом

may (might) с последующим инфинитивом

в действительном или страдатель­

но