Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
микра экзамен.docx
Скачиваний:
45
Добавлен:
10.10.2023
Размер:
760.87 Кб
Скачать

128.3. Эндемический сыпной тиф

Возбудителем эндемического (крысиного) сыпного тифа является R. typhi. Резервуаром инфекции являются крысы и мыши, а передача происходит через блох, крысиных вшей и клещей посредством укусов.

Патогенез и клиническая картина сходна с таковой при эпидемическом сыпном тифе, однако протекает оно значительно легче, поражения ЦНС и сердечно-сосудистой системы обычно выражены слабо. Рецидивы и летальные исходы чрезвычайно редки.

Иммунитет напряженный и длительный, перекрестный с эпидемическим сыпным тифом (за счет общих групповых антигенов). Лечение аналогичное. Для специфической профилактики используют убитую вакцину. Наиболее важное профилактическое мероприятие – истребление грызунов.

128.4. Микробиологическая диагностика заболеваний группы сыпного тифа

Материал для исследования – кровь. Бактериологический метод исследования ввиду невозможности роста на питательных средах и высоких требований к лабораториям (II группа патогенности) не применяется.

При серологическом исследовании чаще всего применяют РНГА, РСК и РИФ. Ранее широко использовалась РА с перекрестными антигенами неподвижных штаммов Proteus vulgaris (реакция Вейля-Феликса). В настоящее время для серологических реакций используются только видоспецифические антигены.

Биологический метод имеет большое значение для диагностики. Внутрибрюшинно заражают морских свинок или мышей, наблюдая лихорадку, отек мошонки у самцов, геморрагический некроз тканей и, в конечном счете, гибель животных.

В аллергическом методе используют внутрикожную пробу (феномен ГЗТ), из молекулярно-генетических методов используют ПЦР.

26.Д.И.Ивановский - основоположник учения о вирусах. Биологическая характеристика вирусов: строение, классификация, отличие от бактерий, место в природе. 1.Д. И. Ивановский. Изучая мозаичную болезнь табака и использовав при этом метод фильтрации, он установил в 1892 г., что фильтрат из растертой взвеси листьев, пораженных этой болезнью, не содержал видимых в микроскоп микроорганизмов, однако вызывал типичные признаки мозаичной болезни у здоровых растений. На основании этих опытов Ивановский сделал вывод, что мозаичная болезнь табака вызывается мельчайшими микроорганизмами, проходящими через керамические фильтры, задерживающие все известные в то время бактерии, что они не способны расти на искусственных питательных средах, применяемых в бактериологии, и передаются в серии последовательных пассажей (прививок). В 1902 г. Ивановский обнаружил кристаллические включения в клетках табачных растений, пораженных мозаичной болезнью, в дальнейшем другими учеными было подтверждено, что это скопление вирусных частиц.

2.Вирусы - мельчайшие микробы, относящиеся к царству Virae (от лат. virus - яд). Они не имеют клеточного строения и состоят из ДНКили РНК-генома, окруженного белками. Являясь автономными генетическими структурами и облигатными внутриклеточными паразитами, вирусы размножаются в цитоплазме или ядре клетки и не имеют собственной метаболической системы. Для них характерен особый разобщенный способ размножения (репродукции): в разных частях вирусинфицированной клетки синтезируются вирусные компоненты, а затем происходят их сборка и формирование вирусных частиц. Зрелая вирусная частица называется вирионом.Размер вирусов колеблется от 15 до 400 нм (1 нм равен 1/1000 мкм): к маленьким вирусам относят парвовирусы и вирус полиомиелита, а к наиболее крупным - вирус натуральной оспы (350 нм). Вирусы отличаются по форме вирионов, которые имеют вид палочек (вирус табачной мозаики), пули (вирус бешенства), сферы (вирусы полиомиелита, ВИЧ), нити (филовирусы), сперматозоида (многие бактериофаги).Различают ДНК- и РНК-содержащие вирусы, которые гаплоидны, т.е. имеют один набор генов. Диплоидный геном имеют только ретровирусы.

3.Классификация:Различают простые вирусы (например, вирус гепатита А) и сложные вирусы (например, вирусы гриппа, герпеса, коронавирусы).

Простые, или безоболочечные, вирусы имеют только нуклеиновую кислоту, связанную с белковой структурой-капсидом .Капсид защищает нуклеиновую кислоту от деградации. У простых вирусов капсид участвует в прикреплении (адсорбции) к клетке хозяина. Простые вирусы выходят из клетки в результате ее разрушения (лизиса).Сложные, или оболочечные, вирусы (рис.), кроме капсида, имеют мембранную двойную липопротеиновую оболочку (суперкапсид).На оболочке вируса расположены гликопротеиновыешипы,илишипики, пепломеры. Разрушение оболочки эфиром и другими растворителями инактивирует сложные вирусы. Под оболочкой некоторых вирусов находится матриксный белок (М-белок).

Рис.Строение оболочечных вирусов с икосаэдрическим (а) и спиральным (б) капсидом

Вирионы имеют спиральный, икосаэдрический или сложный тип симметрии капсида (нуклеокапсида). Спиральный тип(у вирусов гриппа, коронавирусов).Икосаэдрический тип симметрии( у вируса герпеса).Внутренние структуры вирусов называют сердцевиной. У аденовирусов сердцевина состоит из гистоноподобных белков, связанных с ДНК, у реовирусов - из белков внутреннегокапсида.

Д. Балтимор предложил систему классификации вирусов, основываясь на различиях в механизме продукции мРНК. Эта система включает в себя семь основных групп:

(I) Вирусы, содержащие двуцепочечную ДНК и не имеющие РНК-стадии (например, герпесвирусы, поксвирусы, паповавирусы, мимивирус).

(II) Вирусы, содержащие двуцепочечную РНК (например, ротавирусы).

(III) Вирусы, содержащие одноцепочечную молекулу ДНК (например, парвовирусы).

(IV) Вирусы, содержащие одноцепочечную молекулу РНК положительной полярности (например, пикорнавирусы, флавивирусы).

(V) Вирусы, содержащие одноцепочечную молекулу РНК негативной или двойной полярности (например, ортомиксовирусы, филовирусы).

(VI) Вирусы, содержащие одноцепочечную молекулу РНК и имеющие в своем жизненном цикле стадию синтеза ДНК на матрице РНК, ретровирусы (например, ВИЧ).

(VII) Вирусы, содержащие двуцепочечную ДНК и имеющие в своём жизненном цикле стадию синтеза ДНК на матрице РНК, ретроидные вирусы (например, вирус гепатита B).

Таксономия: семейство (название оканчивается на viridae), подсемейство (название оканчивается на virinae), род (название оканчивается на virus). Вид(virus)

4.Основные отличия вирусов от бактерий:

1.Вирусные возбудители – это организмы живой природы неклеточного типа, а бактерии отличаются тем, что являются одноклеточными микроорганизмами.

2.Вирусы размножаются исключительно внутри живых клеток, а бактерии делятся самостоятельно.

3.Вирусные возбудители характеризуются тем, что имеют в своем составе только одну нуклеиновую кислоту. Бактерии отличаются тем, что имеют в своем составе РНК, ДНК, клеточную мембрану и рибосомы, чего нет у вирусов.

4. Вирусы не имеют собственного обмена веществ. Бактерии отличаются тем, что они обладают собственным механизмом обмена веществ.

5.Роль. Вирусы поражают животных, бактерии, грибы и растения. Являясь основными возбудителями инфекционных заболеваний человека, вирусы также участвуют в процессах канцерогенеза, могут передаваться различными путями, в том числе через плаценту (вирус краснухи, цитомегаловирус и др.), поражая плод человека. Они могут приводить и к постинфекционным осложнениям - развитию миокардитов, панкреатитов, иммунодефицитов и др.

27. Вирусы: химический состав. Функции белков и нуклеиновых кислот. Особенности культивирования вирусов. В отличие от клеточных геномов, которые содержат однородную двунитевую ДНК, вирусные геномы чрезвычайно разнообразны. Различают ДНК- и РНК-содержащие вирусы, которые гаплоидны, т.е. имеют один набор генов. Диплоидный геном имеют только ретровирусы. Геном вирусов содержит от 6 до 200 генов и представлен различными видами нуклеиновых кислот: двунитевыми, однонитевыми, линейными, кольцевыми, фрагментированными.

Вирусные РНК.Среди однонитевых РНК-содержащих вирусов различают геномные плюс-нить РНК и минус-нить РНК (полярность РНК). Плюс-нить (позитивная нить) РНК этих вирусов, кроме геномной (наследственной) функции, выполняет функцию информационной, или матричной РНК (иРНК, или мРНК); она является матрицей для белкового синтеза на рибосомах инфицированной клетки. Плюс-нить РНК является инфекционной: при введении в чувствительные клетки она способна вызвать инфекционный процесс. Минус-нить (негативная нить) РНК-содержащих вирусов выполняет только наследственную функцию; для синтеза белка на минус-нити РНК синтезируется комплементарная ей нить. У некоторых вирусов РНК-геном является амбиполярным (ambisense от греч. амби - с обеих сторон, двойная комплементарность), т.е. содержит плюс- и минус-сегменты РНК.

Вирусные ДНК. По структуре молекулы ДНК бывают одно — и двунитевыми, линейными и кольцевыми. У вирусов с двунитевыми ДНК информация обычно закодирована на обеих нитях. Большинство нуклеотидных последовательностей в молекуле ДНК встречается однократно.В концевом фрагменте линейных ДНК возможно наличие ее начального участка в виде повтора, который бывает прямым или инвертируемым. Благодаря таким повторам молекулы ДНК могут приобретать циркулярную форму, которая обеспечивает их устойчивость к эндонуклеазам. Кроме того,стадия образования циркулярной формы обязательна для интеграции вирусной ДНК с геномом клетки.Однонитевые молекулы ДНК обычно одной полярности. Исключение составляют аденоассоциированные вирусы (парвовирусы). Их вирионы содержат ДНК или одной полярности (условно называемой «плюс»), или противоположной (условно — «минус»), Инфекционную активность эти вирусы проявляют только в том случае, когда в клетку проникают вирионы, содержащие ДНК обеих полярностей. Геном вирусов может включаться в геном клетки в виде провируса, проявляя себя генетическим паразитом клетки.

Белки.Для вирусов характерно наличие структурных и неструктурных белков. Неструктурные белки участвуют в репродукции вирусов, а структурные белки обусловливают строение вирусов. Вирусы имеют как вирусспецифические белки, так и клеточные белки, захваченные вирусом при репродукции в клетке хозяина. Липиды и полисахариды имеют в своем составе главным образом сложные вирусы. Структурные белки:1.капсидные(формируют капсид,окружающий нуклеиновую кислоту, а также геномные белки и ферменты)и 2.пепломеры— белки суперкапсидной оболочки, называемой пеплос (от греч. peplos — покров, мантия). Простые вирусы содержат только капсидные белки, сложные — и капсидные, и пепломеры.

Белки в составе вирусногокалсида называются капсомерами. Основной их функцией является защита вирусного генома от неблагоприятных воздействий внешней среды. Это идентичные полипептидные цепи, которые обладают способностью к самосборке. В механизме самосборки заложена возможность контроля за белковыми субъединицами: дефектные и, чужеродные белковые цепи не включаются в капсид. Принцип самосборки характерен только для простых вирусов. Сложные вирусы сборку осуществляют по более сложному многоступенчатому механизму. Однако отдельные ее этапы (формирование капсидов и нуклеокапсидов) основаны на самосборке.

Некоторые капсидные белки обладают ферментативной активностью и участвуют в транскрипции и репликации вирусного генома. Так, в вирионах всех «минус-нитевых» РНК-вирусов обнаружена РНК-зависимая РНК-полимераза (транскриптаза); в вирионах ретровирусов — РНК-зависимая ДНК-полимераза (обратная транскриптаза, ревертаза) и другие ферменты. Наибольшее количество ферментов (более 10) обнаружено в составе вирусов оспы. Суперкапсидные белки (пепломеры) находятся в липопротеидной оболочке сложных вирусов. Они либо пронизывают липидныйбислой вириона, либо не доходят до его внутренней поверхности. Являясь типичными внутримембранными белками, они, как правило, гликозилированы (гликопротеиды), т. е. к молекуле белка в определенных местах прикреплены углеводные цепи.

У большинства сложных вирусов гликопротеиды формируют на поверхности вириона выступы — «шипы» длиной 7—10 нм.

Молекула гликопротеида имеет внешний гидрофильный конец, несущий аминогруппу (N-конец), и внутренний гидрофобный конец, несущий гидроксильную группу (С-конец) и погруженный в липидный бислой.N-концом распознает чувствительную клетку хозяина и адсорбируется на ней.Другой функцией гликопротеидов является участие в слиянии вирусной и клеточной мембран, ведущее к проникновению вирусных частиц в клетку (белки слияния). Вирусные белки слияния ответственны за такие процессы, как гемолиз и слияние плазматических мембран соседних клеток, приводящее к образованию гигантских клеток — синцитиев или симпластов.

Неструктурные белки.К ним относятся: предшественники вирусных белков, которые существуют в зараженной клетке очень непродолжительное время, а затем нарезаются; ферменты синтеза РНК. и ДНК — полимеразы; регуляторы стадий репродукции вирусов; ферменты, модифицирующие вирусные белки — протеиназы и протеинкиназы.

Липиды и углеводы. В состав вирионов всех сложных (оболочечных) вирусов позвоночных кроме нуклеиновой кислоты и белков входят липиды и углеводы. Состав липидов вирионов сходен с липидным составом клетки хозяина: примерно 50—60 % составляют фосфолипиды и 20—30 % — холестерин. Липиды обнаружены только в суперкапсидной оболочке вирионов и имеют клеточное происхождение. Липидный компонент стабилизирует структуру вирусных частиц, поэтому их обработка детергентами или липазами приводит к потере инфекционности. Исключение составляют вирусы оспы. У них липиды не образуют дифференцированной оболочки. Обработка вирусов осповакциныжирорастворителями не приводит к потере инфекционной активности или каким-либо другим структурным изменениям вириона.

Углеводы находятся в вирионах в виде гликопротеинов, встроенных в суперкапсидный слой, а также гликолипидов и имеют клеточное происхождение. Химический состав их полностью определяется клеточными ферментами, которые обеспечивают перенос и присоединение сахарных остатков. В вирионах в основном обнаруживают фруктозу, сахарозу, маннозу, галактозу, нейраминовую кислоту, глюкозамин. Углеводы являются каркасом для локальных участков гликопротеидов, обеспечивают сохранение конформации белковых молекул и защищают от действия протеаз.

Компоненты клетки-хозяина. В составе вирионов могут обнаруживаться некоторые компоненты клетки-хозяина. Это могут быть белки или цельные клеточные структуры. Например, в составе некоторых оболочечных вирусов находится белок цитоскелета актин, в составе папиллома — и полиомавирусов содержатся клеточные гистоны, у ареновирусов обнаружены рибосомы. Клеточные компоненты могут включаться в вирион случайно или закономерно. Во втором случае они могут играть существенную роль в репродукции вирусов, как, например, гистоны для папиллома — и полиомавирусов.

Особенности культивирования.Для культивирования вирусов используют культуры клеток, куриные эмбрионы и чувствительных лабораторных животных. Культуры клеток. Культуры клеток готовят из тканей живот­ных или человека. Культуры подразделяют на первичные (неперевиваемые), полуперевиваемые и перевиваемые.  Приготовление первичной культуры клеток Этапы:измельчения ткани, разъединения клеток путем трипсинизации, отмывания получен­ной однородной суспензии изолированных клеток от трипсина с последующим суспендированием клеток в питательной среде, обеспечивающей их рост. Перевиваемые культуры в отличие от первичных адаптированы к условиям, обеспечивающим им постоянное существование invitro.Приготов­ляют из злокачественных и нормальных линий клеток, обладаю­щих способностью длительно размножаться invitro в определен­ных условиях. К полуперевиваемым культурам относятся диплоид­ные клетки человека. Диплоидные клетки человека не претерпевают зло­качественного перерождения и этим выгодно отличаются от опухолевых. О размножении (репродукции) вирусов в культуре клеток судят поцитопатическому действию (ЦПД). Один из методов индикации вирусов основан на способности поверхности клеток, в которых они репродуцируются, адсорби­ровать эритроциты — реакция гемадсорбции. В культуру клеток, зараженных вирусами, добавляют взвесь эритроцитов и после некоторого времени контакта клетки промывают изотоническим раствором хлорида натрия. На по­верхности пораженных вирусами клеток остаются прилипшие эритроциты. Другой метод — реакция гемагглютинации (РГ). Применяется для обнаружения вирусов в культуральной жид­кости культуры клеток либо хорионаллантоисной или амниотической жидкости куриного эмбриона.   Количество вирусных частиц определяют методом титрования по ЦПД в культуре клеток. Для этого клетки культуры заражают десятикратным разведением вируса. После 6—7-дневной инку­бации их просматривают на наличие ЦПД. За титр вируса при­нимают наибольшее разведение, которое вызывает ЦПД в 50 % зараженных культур. Титр вируса выражают количеством цитопатических доз. Более точным количественным методом учета отдельных ви­русных частиц является метод бляшекНекоторые вирусы можно обнаружить и идентифицировать по включениям, которые они образуют в ядре или цитоплазме зараженных клеток.

Куриные   эмбрионы.   Куриные   эмбрионы   по   сравнению с культурами клеток значительно реже бывают контаминированы вирусами и микоплазмами, а также обладают сравнительно высокой жизнеспособностью и устойчивостью к различным воздей­ствиям..

О репродукции некоторых вирусов, например гриппа, оспы, можно судить по реакции гемагглютинации (РГА) с куриными или другими эритроцитами. К недостаткам данного метода относятся невозможность об­наружения исследуемого микроорганизма без предварительного вскрытия эмбриона, а также наличие в нем большого количества белков и других соединений, затрудняющих последующую очист­ку вирусов при изготовлении различных препа­ратов. Лабораторные животные. Видовая чувствительность живот­ных к определенному вирусу и их возраст определяю репродук­тивную способность вирусов.

Преимущество данного метода перед другими состоит в воз­можности выделения тех вирусов, которые плохо репродуциру­ются в культуре или эмбрионе. К его недостаткам относятся контаминация организма подопытных животных посторонними ви­русами и микоплазмами, а также необходимость последующего заражения культуры клеток для получения чистой линии данно­го вируса, что удлиняет сроки исследования.