Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Joseph I. Goldstein, Dale E. Newbury [et al.]. Scanning Electron Microscopy and X-Ray Microanalysis. (2017). (ISBN 978-1-4939-6674-5). (ISBN 978-1-4939-6676-9). (DOI 10.1007978-1-4939-6676-9).pdf
Скачиваний:
20
Добавлен:
11.04.2023
Размер:
68.34 Mб
Скачать

References

. Fig. 21.19  Example with a pyramid of high purity SrF2 as the scattering target surrounded by a carbon tab (1 cm diameter) on a 2.5 cm diameter brass (Cu and Zn) disk. The Ni signal that is observed likely arises from the Ni-coatings of the specimen stage components

C K

SrL α,β

SrL+SrL

 

SrLg

 

Counts

0 2.0 4.0

21.5\ Summary

C

SrF2

Remote scattering peaks

ZnKα

CuKα

NiKα

6.0

8.0

10.0

12.0

 

Photon energy (keV)

References

357

 

21

 

 

 

α

SrF2_EDGE_20kV10n

SrK

AMED96kHz90T100s2k

 

 

SrF2

 

E0 = 20 keV

SrKβ

14.0

16.0

18.0

20.0

High count EDS spectra can be used to achieve limits of detection approaching a mass concentration of CDL = 0.0001 (100 ppm) when there are no peak interferences from higher concentration constituents, and CDL = 0.0005 (500 ppm) when significant peak interference does occur. However, the analyst must carefully test the SEM/EDS measurement environment to ensure that the trace measurement is meaningful and not a consequence of pathological remote scattering effects.

Currie LA (1968) Limits for qualitative detection and quantitative determination. Anal Chem 40:586–593

Newbury DE, Ritchie NWM (2016) Measurement of trace constituents by electron-excited X-ray microanalysis with energy dispersive spectrometry. Micros Microanal 22(3):520–535

Williams DB, Goldstein JI (1981) Artifacts encountered in energy dispersive X-ray spectrometry in the analytical electron microscope. In: Heinrich KFJ, Newbury DE, Myklebust RL, Fiori CE (eds) Energy dispersive X-ray spectrometry, National Bureau of Standards Special Publication 604 (U.S. Department of Commerce, Washington, DC), pp 341–349

359

 

22

 

 

 

Low Beam Energy X-Ray

Microanalysis

22.1\ What Constitutes “Low” Beam Energy X-Ray Microanalysis? – 360

22.1.1\ Characteristic X-ray Peak Selection Strategy for Analysis – 364 22.1.2\ Low Beam Energy Analysis Range – 364

22.2\ Advantage of Low Beam Energy X-Ray Microanalysis – 365

22.2.1\ Improved Spatial Resolution – 365

22.2.2\ Reduced Matrix Absorption Correction – 366 22.2.3\ Accurate Analysis of Low Atomic Number Elements

at Low Beam Energy – 366

22.3\ Challenges and Limitations of Low Beam Energy X-Ray Microanalysis – 369

22.3.1\ Reduced Access to Elements – 369

22.3.2\ Relative Depth of X-Ray Generation: Susceptibility to Vertical Heterogeneity – 372

22.3.3\ At Low Beam Energy, Almost Everything Is Found To Be Layered – 373

References – 380

© Springer Science+Business Media LLC 2018

J. Goldstein et al., Scanning Electron Microscopy and X-Ray Microanalysis, https://doi.org/10.1007/978-1-4939-6676-9_22

360\ Chapter 22 · Low Beam Energy X-Ray Microanalysis

22.1\ What Constitutes “Low” Beam Energy

where b is a constant and Z is the mass-concentration-­

X-Ray Microanalysis?

 

 

averaged atomic number of the specimen.

 

 

 

 

 

The peak-to-background is then obtained as the ratio of

 

 

 

The incident beam energy, E0, is the parameter that deter-

Eqs. (22.2) and (22.3):

 

 

mines which characteristic X-rays can be excited: the beam

P / B = Ich / Icm (1 / Z )(U0 1)n1

 

(22.4)

energy must exceed the critical excitation energy, Ec, for an

\

atomic shell to initiate ionization and subsequent emission of

The value of n 1 in Eq. (22.4) ranges from 0.5 to 1, so that

characteristic X-rays. This dependence is parameterized with

the “overvoltage” U defined as

 

 

the P/B rises slowly as U0 increases above unity. .Figure 22.1

0,

 

 

shows experimental measurements of Si K-L2 + Si K-M3

 

 

 

U0 = E0 / Ec \

(22.1)

(Si Kα,β) characteristic X-ray intensity as a function of over-

voltage. Near the threshold of U0 = 1, the intensity drops

U0 must exceed unity for X-ray emission. The intensity, Ich, of

sharply, and the Si K-L2 + Si K-M3 peak becomes progres-

sively lower relative to the X-ray continuum background, as

characteristic X-ray generation follows an

exponential

shown in .Fig. 22.2 for Si measured over a range of beam

relation:

 

 

 

 

energies. The peak-to-background strongly influences the

 

 

 

Ich =iB a (U0 1)n

 

 

limit-­of-­detection. While X-ray measurements can certainly

(22.2)

be made with 1 < U

< 1.25 and the limit-of-detection can be

\

 

 

0

 

 

 

 

 

 

improved by increasing the integrated spectrum intensity by

where iB is the beam current, a and n are constants, with

extending the counting time, the detectability within a prac-

1.5 n 2.

 

 

tical measuring time of a constituent excited in this overvolt-

The intensity of the X-ray continuum (bremsstrahlung),

age range diminishes. While major constituents may be

Icm, also depends on the incident beam energy:

 

 

detected, minor and trace constituents are likely to be below

 

 

 

the limit of detection. Thus the situation for 1 < U0 < 1.25

Icm =iB b Z (U0 1) \

(22.3)

must generally be considered “marginally detectable” and is

so marked in .Figs. 22.3, 22.4, 22.5, 22.6, 22.7, and 22.8.

. Fig. 22.1  Production of silicon

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K-shell X-rays with overvoltage

 

 

 

 

 

 

 

Excitation of Si K-shell X-rays

 

 

 

 

 

 

 

 

 

 

1e-2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1e-3

 

 

 

 

 

 

1e-4

 

X-rays/e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SiK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1e-5

1e-6

 

1e-7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

2

4

6

8

10

12

22

 

 

 

 

 

 

 

 

Overvoltage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22.1 · What Constitutes “Low” Beam Energy X-Ray Microanalysis?

 

 

Same scale

 

 

Si

 

 

 

100000

 

 

 

 

 

 

 

 

10000

 

O

 

 

 

 

 

Counts

 

C

 

 

 

Si

 

 

 

 

 

 

 

1000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

Si

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 

 

 

 

 

 

Photon energy (keV)

 

 

 

Same scale

 

 

Si

 

 

 

40000

 

 

 

 

 

 

 

Counts

30000

 

 

 

 

 

 

 

20000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O

 

 

 

 

 

 

10000

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

Si

 

 

 

0

 

 

 

 

 

 

 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 

 

 

 

 

 

Photon energy (keV)

 

361

 

22

 

 

 

Si_5keV

Si_4keV

Si_3keV

Si_2.8keV

Si_2.6keV

Si_2.4keV

Si_2.2keV

Si_2.0keV

Si_1.9keV

3.5

4.0

4.5

5.0

Si

 

 

Si_5keV

 

 

Si_4keV

5 keV

 

 

Si_3keV

 

 

Si_2.8keV

4 keV

 

 

Si_2.6keV

 

 

Si_2.4keV

3 keV

 

 

Si_2.2keV

 

 

Si_2.0keV

2.8 keV

 

 

Si_1.9keV

 

 

 

2.6 keV

 

 

 

2.4 keV

 

 

 

2.2 keV

 

 

 

2.0 keV

 

 

 

1.9 keV

 

 

 

3.5

4.0

4.5

5.0

. Fig. 22.2  Silicon at various incident beam energies from 5 keV to 1.9 keV showing the decrease in the peak-to-background with decreasing overvoltage

. Fig. 22.3  Periodic table illustrating X-ray shell choices for developing analysis strategy within the conventional beam energy range, E0 = 20 keV (Newbury and Ritchie, 2016)

Elemental measurement strategy for conventional beam energy analysis

 

E0 = 20 keV

Principal shell used for identification

 

K-L

U0 > 1.25 (Ec < 16 keV)

K-shell

 

 

EDS resolution: 129 eV (FWHM, MnKα)

L-shell

L-M

 

 

 

 

 

 

Not detectable

 

M-shell

 

H

 

He

 

 

 

 

Li

Be

 

 

Marginally detectable

 

 

 

B

C

N

O

F

Ne

 

 

 

 

 

 

 

 

 

 

Na

Mg

 

 

 

 

 

 

 

 

 

 

Al

Si

P

S

Cl

Ar

K

Ca

Sc

Ti

V

Cr

Mn

Fe

Co

Ni

Cu

Zn

Ga

Ge

As

Se

Br

Kr

Rb

Sr

Y

Zr

Nb

Mo

Tc

Ru

Rh

Pd

Ag

Cd

In

Sn

Sb

Te

I

Xe

Cs

Ba

La

Hf

Ta

W

Re

Os

Ir

Pt

Au

Hg

Tl

Pb

Bi

Po

At

Rn

Fr

Ra

Ac

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ce

Pr

Nd

Pm

Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

Th

Pa

U

Np

Pu

Am

Cm

Bk

Cf

Es

Fm

Md

No

Lr

362\ Chapter 22 · Low Beam Energy X-Ray Microanalysis

. Fig. 22.4  Periodic table illustrating X-ray shell choices for developing analysis strategy at the lower end of the conventional beam energy range, E0 = 10 keV (Newbury and Ritchie, 2016)

Elemental measurement strategy for conventional beam energy analysis

E0 = 10 keV

 

 

 

 

 

 

 

 

 

 

Principal shell used for identification

 

 

 

 

 

 

 

 

 

 

 

 

K-shell

 

 

 

 

K-L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U0 > 1.25 (Ec < 8 keV)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EDS resolution: 129 eV (FWHM, MnKα)

 

 

 

 

 

 

 

L-shell

 

 

 

 

L-M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Not detectable

 

 

 

 

 

 

 

M-shell

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

He

 

 

 

Marginally detectable

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Li

Be

 

 

 

 

 

 

B

C

N

O

F

 

Ne

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Na

Mg

 

 

 

 

 

 

 

 

 

 

 

Al

Si

P

S

Cl

 

Ar

 

 

 

 

 

 

 

 

 

 

 

 

K

Ca

Sc

Ti

V

Cr

Mn

Fe

 

Co

Ni

Cu

Zn

Ga

Ge

As

Se

Br

 

Kr

Rb

Sr

Y

Zr

Nb

Mo

Tc

Ru

 

Rh

Pd

Ag

Cd

In

Sn

Sb

Te

I

 

Xe

Cs

Ba

La

Hf

Ta

W

Re

Os

 

Ir

Pt

Au

Hg

Tl

Pb

Bi

Po

At

 

Rn

Fr

Ra

Ac

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ce

Pr

Nd

Pm

 

Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

 

Lu

 

 

 

 

Th

Pa

U

Np

 

Pu

Am

Cm

Bk

Cf

Es

Fm

Md

No

 

Lr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. Fig. 22.5  Periodic table illustrating X-ray shell choices for developing analysis strategy for the upper end of the low beam energy range, E0 = 5 keV (Newbury and Ritchie, 2016)

Elemental measurement strategy for low beam energy analysis

 

 

E0 = 5 keV

Principal shell used for identification

 

 

K-shell

 

K-L

 

 

 

U0 > 1.25 (Ec < 4.0 keV)

 

 

 

EDS resolution: 129 eV (FWHM, MnKα)

 

 

L-shell

 

L-M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Not detectable

 

M-shell

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

He

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Li

Be

 

 

 

Marginally detectable:

B

C

 

N

 

O

 

F

 

Ne

 

 

 

 

 

 

 

 

 

1 < U0 ≤ 1.25 or weak emission

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Na

Mg

 

 

 

 

 

 

 

 

 

 

Al

Si

P

S

Cl

Ar

K

Ca

Sc

Ti

V

Cr

Mn

Fe

Co

Ni

Cu

Zn

Ga

Ge

As

Se

Br

Kr

Rb

Sr

Y

Zr

Nb

Mo

Tc

Ru

Rh

Pd

Ag

Cd

In

Sn

Sb

Te

I

Xe

Cs

Ba

La

Hf

Ta

W

Re

Os

Ir

Pt

Au

Hg

Tl

Pb

Bi

Po

At

Rn

Fr

Ra

Ac

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ce

Pr

Nd

Pm

Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

Th

Pa

U

Np

Pu

Am

Cm

Bk

Cf

Es

Fm

Md

No

Lr

22

363

22

22.1 · What Constitutes “Low” Beam Energy X-Ray Microanalysis?

. Fig. 22.6  Periodic table illustrating X-ray shell choices for developing analysis strategy within the low beam energy range, E0 = 2.5 keV (Newbury and Ritchie, 2016)

 

 

 

Elemental measurement strategy for low beam energy analysis

 

 

 

 

 

 

 

E0 = 2.5 keV

 

 

 

 

 

 

 

 

 

Principal shell used for identification

 

 

 

 

 

 

 

 

 

 

 

 

K-shell

 

 

 

 

K-L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U0 > 1.25 (Ec < 2.0 keV)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EDS resolution: 129 eV (FWHM, MnKα)

 

 

 

 

 

 

 

L-shell

 

 

 

 

L-M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Not detectable

 

 

 

 

 

 

 

M-shell

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

He

 

 

 

Marginally detectable:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Li

Be

 

 

 

 

 

B

C

 

N

O

F

 

Ne

 

 

 

 

 

 

 

 

 

1 < U0 ≤ 1.25 or weak emission

 

 

 

 

Na

Mg

 

 

 

 

Al

Si

 

P

S

Cl

 

Ar

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K

Ca

Sc

Ti

V

Cr

Mn

Fe

Co

Ni

Cu

Zn

Ga

Ge

 

As

Se

Br

 

Kr

Rb

Sr

Y

Zr

Nb

Mo

Tc

Ru

Rh

Pd

Ag

Cd

In

Sn

 

Sb

Te

I

 

Xe

Cs

Ba

La

Hf

Ta

W

Re

Os

Ir

Pt

Au

Hg

Tl

Pb

 

Bi

Po

At

 

Rn

Fr

Ra

Ac

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ce

Pr

Nd

Pm

Sm

Eu

Gd

Tb

Dy

Ho

 

Er

Tm

Yb

 

Lu

 

 

 

 

Th

Pa

U

Np

Pu

Am

Cm

Bk

Cf

Es

 

Fm

Md

No

 

Lr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. Fig. 22.7  Periodic table illustrating X-ray shell choices for developing analysis strategy within the low beam energy range, E0 = 2.0 keV (Newbury and Ritchie, 2016)

 

 

 

Elemental measurement strategy for low beam energy analysis

 

 

 

 

 

 

E0 = 2.0 keV

 

 

 

 

 

 

 

 

 

Principal shell used for identification

 

 

 

 

 

 

 

 

 

 

 

 

K-shell

 

 

 

 

K-L

U0 > 1.25 (Ec < 1.6 keV)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EDS resolution: 129 eV (FWHM, MnKα)

 

 

 

 

 

 

 

L-shell

 

 

 

 

L-M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Not detectable

 

 

 

 

 

 

 

M-shell

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

He

 

 

 

Marginally detectable:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Li

Be

 

 

 

 

 

B

C

 

N

O

F

Ne

 

 

 

 

 

 

 

 

1 < U0 ≤ 1.25 or weak emission

 

 

 

Na

Mg

 

 

 

 

Al

Si

 

P

S

Cl

Ar

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K

Ca

Sc

Ti

V

Cr

Mn

Fe

Co

Ni

Cu

Zn

Ga

Ge

 

As

Se

Br

Kr

Rb

Sr

Y

Zr

Nb

Mo

Tc

Ru

Rh

Pd

Ag

Cd

In

Sn

 

Sb

Te

I

Xe

Cs

Ba

La

Hf

Ta

W

Re

Os

Ir

Pt

Au

Hg

Tl

Pb

 

Bi

Po

At

Rn

Fr

Ra

Ac

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ce

Pr

Nd

Pm

Sm

Eu

Gd

Tb

Dy

Ho

 

Er

Tm

Yb

Lu

 

 

 

 

Th

Pa

U

Np

Pu

Am

Cm

Bk

Cf

Es

 

Fm

Md

No

Lr