Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Joseph I. Goldstein, Dale E. Newbury [et al.]. Scanning Electron Microscopy and X-Ray Microanalysis. (2017). (ISBN 978-1-4939-6674-5). (ISBN 978-1-4939-6676-9). (DOI 10.1007978-1-4939-6676-9).pdf
Скачиваний:
20
Добавлен:
11.04.2023
Размер:
68.34 Mб
Скачать

References

The corresponding theoretical S/N ratio is estimated from the number n of BSE produced, which depends on the incident beam current IB, the BSE coefficient η, and the dwell time per pixel τ:

n = 6.24 IB ητ \

(5.19)

where the coefficient 6.24 is appropriate for beam current expressed in pA and the dwell time expressed in μs.

Because the image pixels are independent and uncorrelated, if a mean number n of BSE is produced at each pixel the expected variance is n1/2:

(S / N )theory = n / n1/ 2 = n1/ 2 = (6.24 IB ητ )1/ 2

(5.20)

 

 

\

For IB = 4000 pA, ηMo = 0.38, and τ = 64 μs

 

 

(S / N )theory = (6.24 IB ητ )1/ 2 = 779.1

 

(5.21)

\

 

 

The DQE for this particular detector is thus

 

 

DQE = (S / N )2experimental / (S / N )2theoretictal

 

 

= 297.32 / 779.12 = 0.146

\

(5.22)

 

 

A similar study for an Everhart–Thornley SE-BSE detector

on

an

electron

probe

X-ray microanalyzer is shown in

.

Fig.

5.30, for

which

the DQE is calculated as 0.0016.

.Table 5.1 lists values of the DQE for various detectors, demonstrating that a large range in values is encountered, even among detectors of a specific class, for example, the E–T detector.

Everhart-Thornley detector on electron probe microanalyzer

 

300

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

250

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

level

200

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

150

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gray

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

 

Y-Intercept = 28.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

2

4

6

8

10

12

Beam current (nA)

. Fig. 5.30  Average gray level versus beam current for an Everhart– Thornley detector on an electron probe microanalyzer. Specimen: Si; E0 = 10 keV

91

 

5

 

 

 

. Table 5.1  DQE of electron detectors from different

manufacturers (Joy et al. 1996)

SE detector

DQE

 

 

Everhart–Thornley

0.56

 

 

Everhart–Thornley

0.17

Everhart–Thornley

0.12

Everhart–Thornley

0.017

Everhart–Thornley

0.0008

High performance SEM:

 

Everhart–Thornley (lower)

0.18

Everhart–Thornley (TTL)

0.76

Microchannel plate

0.029

BSE detector

 

Scintillator BSE

0.043

Scintillator BSE

0.005

E–T BSE mode (negative bias)

0.001

E–T BSE mode (negative bias)

0.004

Microchannel plate BSE

0.058

Microchannel plate BSE

0.026

References

Everhart T, Thornley R (1960) Wide-band detector for micro-microam- pere low-energy electron currents. J Sci Instrum 37:246

Fiori C, Yakowitz H, Newbury D (1974) Some techniques of signal processing in scanning electron microscopy. In: Johari O (ed) SEM/1974. IIT Research Institute, Chicago, p 167

Jones R (1959) Phenomenological description of the response and detecting ability of radiation detectors. Adv Electr Electron Opt 11:88

Joy DC, Joy CS, Bunn RD (1996) Measuring the performance of scanning electron microscope detectors. Scanning 18:533

Newbury DE (1976) “The utility of specimen current imaging in the scanning electron microscope” SEM/1976/I. IIT Research Inst, Chicago, p 111

Robinson V (1975) “Backscattered electron imaging” SEM/1975, I. IIT Research Inst, Chicago, p 51

Wells OC (1957) The construction of a scanning electron microscope and its application to the study of fibres. Ph. D. Diss., Cambridge University, Cambridge