Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Joseph I. Goldstein, Dale E. Newbury [et al.]. Scanning Electron Microscopy and X-Ray Microanalysis. (2017). (ISBN 978-1-4939-6674-5). (ISBN 978-1-4939-6676-9). (DOI 10.1007978-1-4939-6676-9).pdf
Скачиваний:
20
Добавлен:
11.04.2023
Размер:
68.34 Mб
Скачать

References

Ni-10% Fe

E0 = 20 keV

50%

90%

10 µm

99%

. Fig. 4.25  Range of secondary fluorescence of Fe K-L3 (EK = 7.07 keV) by Ni K-L3 X-rays (7.47 keV). Red arc = extent of direct electron excitation of Ni K-L3 and Fe K-L3. Blue arc = range for 50 % of total secondary fluorescence of Fe K-L3 by Ni K-L3; green arc = 90 %; magenta arc = 99 %

References

Crawford J, Cohen D, Doherty G, Atanacio A (2011) Calculated K, L and M-shell X-ray line intensities for light ion impact on selected targets from Z = 6 to 100. ANSTO/E-774, Australian Nuclear Science and Technology Organisation (September, 2011)

Drouin D, Couture A, Joly D, Tastet X, Aimez V, Gauvin R (2007) CASINO V2.42 – a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29:92–101

63

 

4

 

 

 

Fiori CE, Swyt CR, Myklebust RL (1992) Desktop Spectrum Analyzer (DTSA), a comprehensive software engine for electron-excited X-ray spectrometry. National Institute of Standards and Technology (NIST) – National Institutes of Health (NIH). United States Patent 5,299,138 (March 29, 1994) (Standard Reference Data Program, NIST, Gaithersburg, MD 20899)

Heinrich KFJ, Fiori CE, Myklebust RL (1979) Relative transition probabilities for the X-ray lines from the K level. J Appl Phys 50:5589

Joy D (2006) Monte Carlo simulation. Available at 7 http://www.lehigh. edu/~maw3/link/mssoft/mcsim.html

Kramers H (1923) On the theory of X-ray absorption and the continuous X-ray spectrum. Phil Mag 46:836

Krause M, Oliver J (1979) Natural widths of atomic K and L levels, Kα X-ray lines and several KLL Auger lines. J Phys Chem Ref Data Monogr 8:329

Lifshin E, Ciccarelli MF, Bolon RB (1980) In: Beaman DR, Ogilvie RE, Wittry DB (eds) Proceedings 8th international conference on X-ray optics and microanalysis, vol 141. Pendell, Midland

Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model ‘PAP’. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantitation, vol 31. Plenum Press, New York

Powell C (1976) Use of Monte Carlo Calculations. In: Heinrich KFJ, Newbury DE, Yakowitz H (eds) Electron probe microanalysis and scanning electron microscopy. National Bureau of standard Special Publication 460. U.S. Government Printing Office, Washington, DC, 97

Ritchie NWM (2015) NIST DTSA-II software, including tutorials, is available free at: 7 www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html

65

 

5

 

 

 

Scanning Electron Microscope

(SEM) Instrumentation

5.1\ Electron Beam Parameters – 66

5.2\ Electron Optical Parameters – 66

5.2.1\ Beam Energy – 66

5.2.2\ Beam Diameter – 67

5.2.3\ Beam Current – 67

5.2.4\ Beam Current Density – 68

5.2.5\ Beam Convergence Angle, α – 68

5.2.6\ Beam Solid Angle – 69

5.2.7\ Electron Optical Brightness, β – 70

5.2.8\ Focus – 71

5.3\ SEM Imaging Modes – 75

5.3.1\ High Depth-of-Field Mode – 75

5.3.2\ High-Current Mode – 78

5.3.3\ Resolution Mode – 80

5.3.4\ Low-Voltage Mode – 81

5.4\ Electron Detectors – 83

5.4.1\ Important Properties of BSE and SE for Detector Design and Operation – 83

5.4.2\ Detector Characteristics – 83

5.4.3\ Common Types of Electron Detectors – 85 5.4.4\ Secondary Electron Detectors – 86

5.4.5\ Specimen Current: The Specimen as Its Own Detector – 88 5.4.6\ A Useful, Practical Measure of a Detector:

Detective Quantum Efficiency – 89

\References – 91

© Springer Science+Business Media LLC 2018

J. Goldstein et al., Scanning Electron Microscopy and X-Ray Microanalysis, https://doi.org/10.1007/978-1-4939-6676-9_5