Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Joseph I. Goldstein, Dale E. Newbury [et al.]. Scanning Electron Microscopy and X-Ray Microanalysis. (2017). (ISBN 978-1-4939-6674-5). (ISBN 978-1-4939-6676-9). (DOI 10.1007978-1-4939-6676-9).pdf
Скачиваний:
20
Добавлен:
11.04.2023
Размер:
68.34 Mб
Скачать

XV

Contents

1\

Electron Beam—Specimen Interactions: Interaction Volume

1

1.1\

What

Happens When the Beam Electrons Encounter Specimen Atoms?

2

1.2\

Inelastic

Scattering (Energy Loss) Limits Beam Electron

 

 

 

Travel in the Specimen\ ...........................  

2

1.3\

Elastic

Scattering: Beam Electrons Change Direction of Flight\

4

1.3.1\

How

Frequently Does Elastic Scattering Occur?\

4

1.4\

Simulating

the Effects of Elastic Scattering: Monte Carlo Calculations

5

1.4.1\

What

Do Individual Monte Carlo Trajectories Look Like?\

6

1.4.2\

Monte

Carlo Simulation To Visualize the Electron Interaction Volume\

6

1.4.3\

Using

the Monte Carlo Electron Trajectory Simulation to Study

 

 

 

the Interaction Volume\ ............................

8

1.5\

A Range Equation To Estimate the Size of the Interaction Volume\

12

\

References .................................................. 

14

2\

Backscattered Electrons ..  

15

2.1Origin\ ............................................................   16

2.1.1\ The Numerical Measure of Backscattered Electrons   16 2.2\ Critical Properties of Backscattered Electrons\   16 2.2.1\ BSE Response to Specimen Composition (η vs. Atomic Number, Z)\   16 2.2.2\ BSE Response to Specimen Inclination (η vs. Surface Tilt, θ)\   20 2.2.3\ Angular Distribution of Backscattering\   22 2.2.4\ Spatial Distribution of Backscattering .   23 2.2.5\ Energy Distribution of Backscattered Electrons\   27

2.3Summary ......................................................   27

\References ....................................................   28

3\

Secondary Electrons\ .........   29

3.1Origin\ ............................................................   30

3.2Energy Distribution\ .................................   30

3.3\

Escape Depth of Secondary Electrons

  30

3.4\

Secondary Electron Yield Versus Atomic Number\

  30

3.5

Secondary Electron Yield Versus Specimen Tilt\

  34

3.6\

Angular Distribution of Secondary Electrons

  34

3.7\

Secondary Electron Yield Versus Beam Energy

  35

3.8\

Spatial Characteristics of Secondary Electrons

  35

\References ....................................................   37

4\

X-Rays ......................................  

39

4.1

Overview ......................................................  

40

4.2Characteristic X-Rays ...............................   40

4.2.1Origin\.............................................................   40

4.2.2Fluorescence Yield\.....................................   41

4.2.3 X-Ray Families\   42

4.2.4X-Ray Nomenclature\ .................................   43

4.2.5X-Ray Weights ofLines\ .............................   44 4.2.6\ Characteristic X-Ray Intensity\ ................   44

4.3

X-Ray Continuum (bremsstrahlung) ...   47

4.3.1\

X-Ray Continuum Intensity .....................   49

4.3.2\

The

Electron-Excited X-Ray Spectrum, As-Generated

  49

4.3.3\

Range

of X-ray Production\......................   50

4.3.4\

Monte

Carlo Simulation of X-Ray Generation

  51

4.3.5\

X-ray Depth Distribution Function, ϕ(ρz)

  53

XVI\ Contents

4.4 X-Ray Absorption   54

4.5X-Ray Fluorescence\..................................   59

\References ....................................................   63

5\

Scanning Electron Microscope (SEM) Instrumentation

65

5.1Electron Beam Parameters ....................   66

5.2Electron Optical Parameters .................   66

5.2.1Beam Energy\ ...............................................   66

5.2.2

Beam Diameter

  67

5.2.3

Beam Current\

  67

5.2.4\

Beam

Current Density\ ..............................   68

5.2.5\

Beam

Convergence Angle, α\ ..................   68

5.2.6\

Beam

Solid Angle

  69

5.2.7\

Electron

Optical Brightness, β ................   70

5.2.8Focus ..............................................................   71

5.3 SEM Imaging Modes\................................   75 5.3.1\ High Depth-of-Field Mode ......................   75

5.3.2High-Current Mode\...................................   78

5.3.3 Resolution Mode   80

5.3.4Low-Voltage Mode\ ....................................   81

5.4Electron Detectors\ ...................................   83

5.4.1\ Important Properties of BSE and SE for Detector Design and Operation   83

5.4.2Detector Characteristics\ ..........................   83

5.4.3\

Common

Types of Electron Detectors\

  85

5.4.4\

Secondary

Electron Detectors\ ...............   86

5.4.5\

Specimen

Current: The Specimen as Its Own Detector\

  88

5.4.6\ A Useful, Practical Measure of a Detector: Detective

 

 

Quantum Efficiency ...................................   89

\References ....................................................   91

6\

Image Formation\

  93

6.1\

Image Construction by Scanning Action

  94

6.2

Magnification\

  95

6.2.1\

Magnification, Image Dimensions, and Scale Bars

  95

6.3Making Dimensional Measurements WiththeSEM:

How Big Is That Feature? ........................   95

6.3.1Calibrating theImage ...............................   95

6.4

Image Defects\

  98

6.4.1\

Projection

Distortion (Foreshortening)\

  98

6.4.2\

Image

Defocusing (Blurring)\................100

6.5Making Measurements onSurfaces WithArbitrary Topography: Stereomicroscopy ...................................  102

6.5.1Qualitative Stereomicroscopy\ .............103

6.5.2Quantitative Stereomicroscopy\ ..........107

\References ..................................................  110

7\

SEM Image Interpretation\

111

7.1Information inSEM Images \ ................  112

7.2\

Interpretation of SEM Images of Compositional Microstructure

  112

7.2.1\

Atomic Number Contrast With Backscattered Electrons

112

7.2.2\

Calculating Atomic Number Contrast\

113

7.2.3\

BSE Atomic Number Contrast With the Everhart–Thornley Detector\

113

7.3\

Interpretation of SEM Images of Specimen Topography\

  114

7.3.1\

Imaging

Specimen Topography With the Everhart–Thornley Detector\

115

7.3.2\

The

Light-Optical Analogy to the SEM/E–T (Positive Bias) Image\

116

7.3.3\

Imaging

Specimen Topography With a Semiconductor BSE Detector\

119

\

References ..................................................  121

XVII

Contents

8\

The Visibility of Features in SEM Images\

123

8.1\

Signal Quality: Threshold Contrast and Threshold Current\

  124

\References ..................................................  131

9\

Image Defects\....................   133

9.1

Charging\ ....................................................  134

9.1.1\

What

Is Specimen Charging?\ ...............134

9.1.2\

Recognizing

Charging Phenomena in SEM Images

135

9.1.3\

Techniques

to Control Charging Artifacts (High Vacuum Instruments)\

139

9.2Radiation Damage\ .................................  142

9.3

Contamination

  143

9.4\

Moiré Effects: Imaging What Isn’t Actually There

  144

\References ..................................................  146

10\

High Resolution Imaging

147

10.1\ What Is “High Resolution SEM Imaging”?

  148

10.2Instrumentation Considerations\ ......  148

10.3\

Pixel

Size, Beam Footprint, and Delocalized Signals\

  148

10.4\

Secondary

Electron Contrast at High Spatial Resolution

  150

10.4.1\

SE

range Effects Produce Bright Edges (Isolated Edges)\

151

10.4.2\

Even

More Localized Signal: Edges Which Are Thin Relative

152

 

to the Beam Range\

10.4.3\

Too

Much of a Good Thing: The Bright Edge Effect Can Hinder

 

 

Distinguishing Shape\ .............................153

10.4.4\

Too

Much of a Good Thing: The Bright Edge Effect Hinders

154

 

Locating the True Position of an Edge for Critical Dimension Metrology

10.5\

Achieving

High Resolution with Secondary Electrons

  156

10.5.1\

Beam

Energy Strategies\.........................156

10.5.2

Improving theSE 1 Signal\.......................158

10.5.3\

Eliminate

the Use of SEs Altogether: “Low Loss BSEs“

161

10.6\

Factors

That Hinder Achieving High Resolution

  163

10.6.1

Achieving Visibility: TheThreshold Contrast

163

10.6.2\

Pathological

Specimen Behavior\ ........163

10.6.3\

Pathological

Specimen and Instrumentation Behavior

164

\References ..................................................  164

11\

Low Beam Energy SEM ...   165

11.1\

What

Constitutes “Low” Beam Energy SEM Imaging?\

  166

11.2\

Secondary

Electron and Backscattered Electron Signal Characteristics

 

 

in the Low Beam Energy Range\ ........  166

11.3\

Selecting

the Beam Energy to Control the Spatial Sampling

 

 

of Imaging Signals\ .................................  169

11.3.1\

Low

Beam Energy for High Lateral Resolution SEM

169

11.3.2\

Low

Beam Energy for High Depth Resolution SEM

169

11.3.3\

Extremely

Low Beam Energy Imaging\

171

\References ..................................................  172

12\

Variable Pressure Scanning Electron Microscopy (VPSEM)

173

12.1\

Review:

The Conventional SEM High Vacuum Environment

  174

12.1.1\

Stable

Electron Source Operation\ ......174

12.1.2

Maintaining Beam Integrity ..................174

12.1.3\

Stable

Operation of the Everhart–Thornley Secondary Electron Detector\

174

12.1.4

Minimizing Contamination ...................174

12.2\

How

Does VPSEM Differ From the Conventional SEM

 

 

Vacuum Environment?\ .........................  174

\XVIII Contents

12.3\

Benefits

of Scanning Electron Microscopy at Elevated Pressures

  175

12.3.1

Control ofSpecimen Charging\ ............ 175

12.3.2\

Controlling

the Water Environment of a Specimen\

176

12.4\

Gas Scattering Modification of the Focused Electron Beam

  177

12.5VPSEM Image Resolution\ ....................  181

12.6\

Detectors for Elevated Pressure Microscopy\

  182

12.6.1\

Backscattered

Electrons—Passive Scintillator Detector

182

12.6.2\

Secondary

Electrons–Gas Amplification Detector\

182

12.7Contrast inVPSEM\..................................   184

\References ..................................................  185

13\

ImageJ and Fiji\

187

13.1The ImageJ Universe\ .............................  188

13.2Fiji\ .................................................................  188

13.3Plugins\ ........................................................  190

13.4Where toLearn More .............................   191

\References ..................................................  193

14\

SEM Imaging Checklist\ ..   195

14.1\

Specimen Considerations (High Vacuum SEM; Specimen Chamber Pressure < 10−3 Pa)\

  197

14.1.1\

Conducting

or Semiconducting Specimens\

197

14.1.2

Insulating Specimens\ .............................197

14.2Electron Signals Available ...................  197

14.2.1Beam Electron Range\ .............................197

14.2.2Backscattered Electrons ........................197

14.2.3Secondary Electrons \ ..............................197

14.3Selecting theElectron Detector ........   198

14.3.1\ Everhart–Thornley Detector (“Secondary Electron” Detector)\ 198

14.3.2Backscattered Electron Detectors\ ......198

14.3.3“Through-the-Lens” Detectors .............198

14.4\

Selecting the Beam Energy for SEM Imaging\

  198

14.4.1

Compositional Contrast WithBackscattered Electrons\

198

14.4.2

Topographic Contrast WithBackscattered Electrons\

198

14.4.3

Topographic Contrast WithSecondary Electrons

198

14.4.4\

High

Resolution SEM Imaging\ .............198

14.5Selecting theBeam Current \ ...............  199

14.5.1

High Resolution Imaging\ ......................199

14.5.2\

Low

Contrast Features Require High Beam Current and/or Long Frame Time to Establish Visibility\

199

14.6Image Presentation\ ...............................  199

14.6.1“Live” Display Adjustments\ ...................199

14.6.2Post-Collection Processing\ ...................199

14.7Image Interpretation .............................  199

14.7.1Observer’s Point ofView\........................ 199

14.7.2Direction ofIllumination\ ....................... 199

14.7.3Contrast Encoding\...................................200

14.7.4\ Imaging Topography With the Everhart–Thornley Detector\ 200 14.7.5\ Annular BSE Detector (Semiconductor Sum Mode A + B and Passive Scintillator)\ 200 14.7.6\ Semiconductor BSE Detector Difference Mode, A−B\ 200 14.7.7\ Everhart–Thornley Detector, Negatively Biased to Reject SE\ 200 14.8\ Variable Pressure Scanning Electron Microscopy (VPSEM)   200

14.8.1VPSEM Advantages\ .................................200

14.8.2VPSEM Disadvantages ............................200

15\

SEM Case Studies\ .............   201

15.1\

Case Study: How High Is That Feature Relative to Another?

  202

15.2\

Revealing Shallow Surface Relief\ .....  204

15.3\

Case Study: Detecting Ink-Jet Printer Deposits\

  206

XIX

Contents

16\

Energy Dispersive X-ray Spectrometry: Physical Principles and User-Selected

 

 

Parameters\..........................   209

16.1\

The

Energy Dispersive Spectrometry (EDS) Process\

  210

16.1.1\

The

Principal EDS Artifact: Peak Broadening (EDS Resolution Function)\

210

16.1.2

Minor Artifacts: TheSi-Escape Peak\ ... 213

16.1.3\

Minor

Artifacts: Coincidence Peaks ....213

16.1.4\

Minor

Artifacts: Si Absorption Edge and Si Internal Fluorescence Peak\

215

16.2\

“Best

Practices” for Electron-Excited EDS Operation\

  216

16.2.1

Operation oftheEDS System ...............

216

16.3\

Practical

Aspects of Ensuring EDS Performance for a Quality

 

 

Measurement Environment ................  219

16.3.1

Detector Geometry\ .................................219

16.3.2

Process Time\

222

16.3.3Optimal Working Distance ....................222

16.3.4Detector Orientation\ ..............................223

16.3.5Count Rate Linearity\ ...............................225

16.3.6Energy Calibration Linearity .................226

16.3.7Other Items\................................................227

16.3.8\

Setting

Up a Quality Control Program\

228

16.3.9

Purchasing anSDD\.................................. 230

\References ..................................................  234

17\ DTSA-II EDS Software\ .....   235

17.1Getting Started WithNIST DTSA-II\ ...   236

17.1.1Motivation ..................................................236

17.1.2Platform\ ......................................................236

17.1.3Overview\ ....................................................236

17.1.4Design\ .........................................................237

17.1.5\ The Three -Leg Stool: Simulation, Quantification and Experiment Design\ 237 17.1.6 Introduction toFundamental Concepts 238

17.2Simulation inDTSA-II\ ............................   245

17.2.1Introduction\ ..............................................245

17.2.2Monte Carlo Simulation .........................245

17.2.3

Using theGUI ToPerform aSimulation\

247

17.2.4

Optional Tables

262

\References ..................................................  264

18\

Qualitative Elemental Analysis by Energy Dispersive X-Ray Spectrometry\

265

18.1\

Quality

Assurance Issues for Qualitative Analysis: EDS Calibration

  266

18.2\

Principles

of Qualitative EDS Analysis\

  266

18.2.1\

Critical

Concepts From the Physics of Characteristic X-ray Generation

266

 

and Propagation\

18.2.2\

X-Ray Energy Database: Families of X-Rays\

269

18.2.3\

Artifacts

of the EDS Detection Process\

269

18.3\

Performing

Manual Qualitative Analysis

  275

18.3.1\

Why

are Skills in Manual Qualitative Analysis Important?

275

18.3.2\

Performing

Manual Qualitative Analysis: Choosing the Instrument

 

 

Operating Conditions .............................277

18.4Identifying thePeaks\ ............................   278

18.4.1

Employ theAvailable Software Tools\

278

18.4.2\

Identifying

the Peaks: Major Constituents

280

18.4.3\

Lower

Photon Energy Region\ ..............281

18.4.4\

Identifying

the Peaks: Minor and Trace Constituents

281

18.4.5

Checking Your Work\................................281

18.5\

A Worked Example of Manual Peak Identification

  281

\

References ..................................................  287

XX\ Contents

19\

Quantitative Analysis: From k-ratio to Composition

289

19.1

What Is ak-ratio?\

  290

19.2Uncertainties ink-ratios .......................   291

19.3 Sets ofk-ratios\   291 19.4\ Converting Sets of k-ratios Into Composition\   292

19.5The Analytical Total ................................  292

19.6

Normalization\

  292

19.7

Other Ways toEstimate C Z

  293

19.7.1\

Oxygen

by Assumed Stoichiometry\ ..293

19.7.2Waters ofCrystallization\........................ 293

19.7.3Element by Difference\............................293

19.8Ways ofReporting Composition\.......   294

19.8.1

Mass Fraction\ ............................................294

19.8.2

Atomic Fraction\

294

19.8.3

Stoichiometry\ ...........................................294

19.8.4

Oxide Fractions

294

19.9\

The

Accuracy of Quantitative Electron-Excited X-ray Microanalysis\

  295

19.9.1Standards-Based k-ratio Protocol\ .......295

19.9.2“Standardless Analysis”\ ..........................296 19.10\ Appendix\ ...................................................  298

19.10.1\The

Need for Matrix Corrections To Achieve Quantitative Analysis\

  298

19.10.2\The

Physical Origin of Matrix Effects\ .  299

19.10.3 ZAF Factors inMicroanalysis\ ................   299

\References ..................................................  307

20\ Quantitative Analysis: The SEM/EDS Elemental Microanalysis k-ratio

Procedure for Bulk Specimens, Step-by-Step 309 20.1\ Requirements Imposed on the Specimen and Standards\   311

20.2Instrumentation Requirements\ ........  311

20.2.1Choosing theEDS Parameters\ ............. 311

20.2.2Choosing theBeam Energy, E0\ ............313

20.2.3Measuring theBeam Current ............... 313

20.2.4Choosing theBeam Current\................. 314

20.3\

Examples of the k-ratio/Matrix Correction Protocol with DTSA II

  316

20.3.1\

Analysis

of Major Constituents (C > 0.1 Mass Fraction)

 

 

with Well-Resolved Peaks\......................316

20.3.2\

Analysis

of Major Constituents (C > 0.1 Mass Fraction)

 

 

with Severely Overlapping Peaks\ .......318

20.3.3\

Analysis

of a Minor Constituent with Peak Overlap From

 

aMajor Constituent\ ................................319

20.3.4Ba-Ti Interference inBaTiSi 3O9\ .............319 20.3.5\ Ba-Ti Interference: Major/Minor Constituent Interference in K2496

Microanalysis Glass\ .................................319 20.4\ The Need for an Iterative Qualitative and Quantitative

Analysis Strategy\ ....................................  319

20.4.1\

Analysis

of a Complex Metal Alloy, IN100\

320

20.4.2

Analysis ofaStainless Steel\ ..................

323

20.4.3\

Progressive

Discovery: Repeated Qualitative–Quantitative Analysis

 

 

 

Sequences\..................................................

324

20.5Is theSpecimen Homogeneous?\ ......   326

20.6Beam-Sensitive Specimens .................  331

20.6.1

Alkali Element Migration\.......................331

20.6.2\

Materials

Subject to Mass Loss During Electron Bombardment—

 

the Marshall-Hall Method\ .....................334

\

References ..................................................  339

XXI

Contents

21\

Trace Analysis by SEM/EDS\

341

21.1\ Limits of Detection for SEM/EDS Microanalysis   342 21.2\ Estimating the Concentration Limit of Detection, CDL\   343

21.2.1Estimating CDL from a Trace or Minor Constituent from Measuring

a Known Standard\ ...................................343

21.2.2Estimating CDL After Determination of a Minor or Trace Constituent

343with Severe Peak Interference from a Major Constituent\

21.2.3Estimating CDL When a Reference Value for Trace or

Minor Element Is Not Available\...........343

21.3\

Measurements

of Trace Constituents by Electron-Excited Energy

 

 

Dispersive X-ray Spectrometry\ .........  345

21.3.1\

Is a Given Trace Level Measurement Actually Valid?

345

21.4\

Pathological

Electron Scattering Can Produce “Trace” Contributions

 

 

to EDS Spectra\

  350

21.4.1\

Instrumental

Sources of Trace Analysis Artifacts\

350

21.4.2\

Assessing

Remote Excitation Sources in an SEM-EDS System

353

21.5Summary ....................................................  357

\References ..................................................  357

22\

Low Beam Energy X-Ray Microanalysis\

359

22.1\

What

Constitutes “Low” Beam Energy X-Ray Microanalysis?

  360

22.1.1\

Characteristic

X-ray Peak Selection Strategy for Analysis\

364

22.1.2\

Low

Beam Energy Analysis Range\......364

22.2\

Advantage of Low Beam Energy X-Ray Microanalysis\

  365

22.2.1

Improved Spatial Resolution ................365

22.2.2\

Reduced

Matrix Absorption Correction

366

22.2.3\

Accurate

Analysis of Low Atomic Number Elements at Low Beam Energy

366

22.3\

Challenges

and Limitations of Low Beam Energy X-Ray Microanalysis\

  369

22.3.1

Reduced Access toElements ................ 369

22.3.2\

Relative

Depth of X-Ray Generation: Susceptibility to Vertical Heterogeneity

372

22.3.3\

At

Low Beam Energy, Almost Everything Is Found To Be Layered\

373

\References\.................................................  380

23\

Analysis of Specimens with Special Geometry: Irregular Bulk

 

 

Objects and Particles

381

23.1\

The

Origins of “Geometric Effects”: Bulk Specimens

  382

23.2\

What

Degree of Surface Finish Is Required for Electron-Excited X-ray

 

 

Microanalysis To Minimize Geometric Effects?\

  384

23.2.1

No Chemical Etching\ ..............................384

23.3\

Consequences

of Attempting Analysis of Bulk Materials

 

 

With Rough Surfaces\.............................  385

23.4\

Useful

Indicators of Geometric Factors Impact on Analysis

  386

23.4.1

The Raw Analytical Total\........................386

23.4.2\

The

Shape of the EDS Spectrum\ .........389

23.5\

Best

Practices for Analysis of Rough Bulk Samples\

  391

23.6

Particle Analysis\

  394

23.6.1\

How

Do X-ray Measurements of Particles Differ

 

 

From Bulk Measurements? ....................394

23.6.2\

Collecting

Optimum Spectra From Particles

395

23.6.3\

X-ray Spectrum Imaging: Understanding Heterogeneous Materials

400

23.6.4\

Particle

Geometry Factors Influencing Quantitative Analysis of Particles

403

23.6.5\

Uncertainty

in Quantitative Analysis of Particles\

405

23.6.6

Peak-to-Background (P/B) Method\ ....408

23.7Summary ....................................................  410

\

References ..................................................  411

\XXII Contents

24\

Compositional Mapping\

413

24.1\ Total Intensity Region-of-Interest Mapping   414 24.1.1\ Limitations of Total Intensity Mapping\   415

24.2X-Ray Spectrum Imaging\.....................  417

24.2.1

Utilizing XSI Datacubes ..........................419

24.2.2

Derived Spectra

419

24.3

Quantitative Compositional Mapping

424

24.4\

Strategy for XSI Elemental Mapping Data Collection

430

24.4.1Choosing theEDS Dead-Time .............. 430

24.4.2Choosing thePixel Density ................... 432

24.4.3Choosing thePixel Dwell Time\ ............ 434

\References ..................................................439

25\

Attempting Electron-Excited X-Ray Microanalysis in the Variable Pressure

 

 

Scanning Electron Microscope (VPSEM)\

  441

25.1\

Gas Scattering Effects in the VPSEM

442

25.1.1\

Why

Doesn’t the EDS Collimator Exclude the Remote Skirt X-Rays?

446

25.1.2\

Other

Artifacts Observed in VPSEM X-Ray Spectrometry\

448

25.2\

What Can Be Done To Minimize gas Scattering in VPSEM?\

450

25.2.1

Workarounds ToSolve Practical Problems

451

25.2.2Favorable Sample Characteristics .......451

25.2.3Unfavorable Sample Characteristics ..456

\References ..................................................459

26\

Energy Dispersive X-Ray Microanalysis Checklist\

  461

26.1

Instrumentation\

462

26.1.1SEM ...............................................................462

26.1.2EDS Detector\ .............................................462 26.1.3\ Probe Current Measurement Device\ .462

26.1.4 Conductive Coating\ ................................463

26.2Sample Preparation\...............................463

26.2.1Standard Materials\ ..................................464

26.2.2Peak Reference Materials\ ......................464

26.3Initial Set-Up ............................................. 464

26.3.1

Calibrating theEDS Detector\...............

464

26.4

Collecting Data\

466

26.4.1Exploratory Spectrum\ ............................466

26.4.2Experiment Optimization ......................467

26.4.3Selecting Standards\ ................................467

26.4.4 Reference Spectra 467

26.4.5Collecting Standards\ ..............................467

26.4.6Collecting Peak-Fitting References\ ....467

26.4.7

Collecting Spectra FromtheUnknown\

467

26.5

Data Analysis

468

26.5.1

Organizing theData ................................ 468

26.5.2

Quantification\

468

26.6

Quality Check\

468

26.6.1\

Check

the Residual Spectrum After Peak Fitting\

468

26.6.2Check theAnalytic Total\ ........................ 469

26.6.3Intercompare theMeasurements\ ....... 469

\Reference ....................................................470

27\

X-Ray Microanalysis Case Studies

  471

27.1\

Case Study: Characterization of a Hard-Facing Alloy Bearing Surface\

472

27.2\

Case Study: Aluminum Wire Failures in Residential Wiring

474

27.3\

Case Study: Characterizing the Microstructure of a Manganese Nodule\

476

\

References ..................................................479

XXIII

Contents

28\

Cathodoluminescence\ ...   481

28.1Origin\ ..........................................................482

28.2Measuring Cathodoluminescence\ ...483

28.2.1

Collection ofCL\

483

28.2.2

Detection ofCL

483

28.3

Applications ofCL\

485

28.3.1

Geology .......................................................485

28.3.2

Materials Science\

485

28.3.3

Organic Compounds ...............................489

\References ..................................................489

29\

Characterizing Crystalline Materials in the SEM\

  491

29.1\ Imaging Crystalline Materials with Electron Channeling Contrast\

492

29.1.1Single Crystals ...........................................492

29.1.2Polycrystalline Materials\........................494

29.1.3\

Conditions

for Detecting Electron Channeling Contrast\

496

29.2\

Electron

Backscatter Diffraction in the Scanning Electron

 

 

Microscope ................................................496

29.2.1

Origin ofEBSD Patterns\ ......................... 498

29.2.2\

Cameras

for EBSD Pattern Detection .499

29.2.3

EBSD Spatial Resolution .........................499

29.2.4\

How

Does a Modern EBSD System Index Patterns

501

29.2.5\

Steps

in Typical EBSD Measurements

502

29.2.6Display oftheAcquired Data\ ............... 505

29.2.7Other Map Components ........................508

29.2.8\ Dangers and Practice of “Cleaning” EBSD Data\ 508 29.2.9\ Transmission Kikuchi Diffraction in the SEM 509

29.2.10Application Example ...............................510

29.2.11Summary\ ....................................................513

29.2.12\Electron Backscatter Diffraction Checklist\ 513

\References ..................................................514

30\

Focused Ion Beam Applications in the SEM Laboratory\

  517

30.1

Introduction\

518

30.2

Ion–Solid Interactions\ ..........................518

30.3\

Focused

Ion Beam Systems .................519

30.4

Imaging withIons

520

30.5Preparation ofSamples forSEM\ ....... 521

30.5.1

Cross-Section Preparation\ ....................522

30.5.2\

FIB

Sample Preparation for 3D Techniques and Imaging

524

30.6Summary ....................................................526

\References ..................................................528

31\ Ion Beam Microscopy\ .....   529 31.1\ What Is So Useful About Ions?\...........530

31.2Generating Ion Beams\ ..........................533

31.3Signal Generation intheHIM ............. 534

31.4\ Current Generation and Data Collection in the HIM\ 536

31.5Patterning withIon Beams\ ................. 537

31.6Operating theHIM\ ................................. 538

31.7\

Chemical

Microanalysis with Ion Beams

538

\

References ..................................................539

\

Supplementary Information\

541

 

Appendix\ ....................................................542

\

Index\..........................................................547

1

 

1

 

 

 

Electron Beam—Specimen

Interactions: Interaction

Volume

1.1\ What Happens When the Beam Electrons Encounter Specimen Atoms? – 2

1.2\ Inelastic Scattering (Energy Loss) Limits Beam

Electron Travel in the Specimen – 2

1.3\ Elastic Scattering: Beam Electrons Change

Direction of Flight – 4

1.3.1\ How Frequently Does Elastic Scattering Occur? – 4

1.4\ Simulating the Effects of Elastic Scattering: Monte Carlo Calculations – 5

1.4.1\ What Do Individual Monte Carlo Trajectories Look Like? – 6 1.4.2\ Monte Carlo Simulation To Visualize the Electron

Interaction Volume – 6

1.4.3\ Using the Monte Carlo Electron Trajectory Simulation to Study the Interaction Volume – 8

1.5\ A Range Equation To Estimate the Size of the Interaction Volume – 12

\References – 14

© Springer Science+Business Media LLC 2018

J. Goldstein et al., Scanning Electron Microscopy and X-Ray Microanalysis, https://doi.org/10.1007/978-1-4939-6676-9_1

\2 Chapter 1 · Electron Beam—Specimen Interactions: Interaction Volume

1

1.1\ What Happens When the Beam

Electrons Encounter Specimen Atoms?

By selecting the operating parameters of the SEM electron gun, lenses, and apertures, the microscopist controls the characteristics of the focused beam that reaches the specimen surface: energy (typically selected in the range 0.1– 30 keV), diameter (0.5 nm to 1 μm or larger), beam current (1 pA to 1 μA), and convergence angle (semi-cone angle 0.001–0.05 rad). In a conventional high vacuum SEM (typically with the column and specimen chamber pressures reduced below 103 Pa), the residual atom density is so low that the beam electrons are statistically unlikely to encounter any atoms of the residual gas along the flight path from the electron source to the specimen, a distance of approximately 25 cm.

kThe initial dimensional scale

With a cold or thermal field emission gun on a highperformance SEM, the incident beam can be focused to 1 nm in diameter, which means that for a target such as gold (atom diameter ~ 288 pm), there are approximately 12 gold atoms in the first atomic layer of the solid within the area of the beam footprint at the surface.

At the specimen surface the atom density changes abruptly to the very high density of the solid. The beam electrons interact with the specimen atoms through a variety of physical processes collectively referred to as “scattering events.” The overall effects of these scattering events are to transfer energy to the specimen atoms from the beam electrons, thus setting a limit on their travel within the solid, and to alter the direction of travel of the beam electrons away from the well-defined incident beam trajectory. These beam electron–specimen interactions produce the backscattered electrons (BSE), secondary electrons (SE), and X-rays that convey information about the specimen, such as coarseand fine-scale topographic features, composition, crystal structure, and local electrical and magnetic fields. At the level needed to interpret SEM images and to perform electronexcited X-ray microanalysis, the complex variety of scattering processes will be broadly classified into “inelastic” and “elastic” scattering.

1.2\ Inelastic Scattering (Energy Loss)

Limits Beam Electron Travel

in the Specimen

“Inelastic” scattering refers to a variety of physical processes that act to progressively reduce the energy of the beam electron by transferring that energy to the specimen atoms through interactions with tightly bound inner-shell atomic electrons and loosely bound valence electrons. These energy loss processes include ejection of weakly bound outer-shell

atomic electrons (binding energy of a few eV) to form secondary electrons; ejection of tightly bound inner shell atomic electrons (binding energy of hundreds to thousands of eV) which subsequently results in emission of characteristic X-rays; deceleration of the beam electron in the electrical field of the atoms producing an X-ray continuum over all energies from a few eV up to the beam’s landing energy (E0) (bremsstrahlung or “braking radiation”); generation of waves in the free electron gas that permeates conducting metallic solids (plasmons); and heating of the specimen (phonon production). While energy is lost in these inelastic scattering events, the beam electrons only deviate slightly from their current path. The energy loss due to inelastic scattering sets an eventual limit on how far the beam electron can travel in the specimen before it loses all of its energy and is absorbed by the specimen.

To understand the specific limitations on the distance traveled in the specimen imposed by inelastic scattering, a mathematical description is needed of the rate of energy loss (incremental dE, measured in eV) with distance (incremental ds, measured in nm) traveled in the specimen. Although the various inelastic scattering energy loss processes are discrete and independent, Bethe (1930) was able to summarize their collective effects into a “continuous energy loss approximation”:

dE / ds (eV / nm) = − 7.85(Z r / AE)ln (1.166 E / J ) \ (1.1a)

where E is the beam energy (keV), Z is the atomic number, ρ is the density (g/cm3), A is the atomic weight (g/mol), and J is the “mean ionization potential” (keV) given by

J (keV)= (9.76 Z + 58.5 Z 0.19 )x103

\

(1.1b)

 

 

The Bethe expression is plotted for several elements (C, Al, Cu, Ag, Au) over the range of “conventional” SEM operating energies, 5–30 keV in .Fig. 1.1. This figure reveals that the rate of energy loss dE/ds increases as the electron energy decreases and increases with the atomic number of the target. An electron with a beam energy of 20 keV loses energy at approximately 10 eV/nm in Au, so that if this rate was constant, the total path traveled in the specimen would be approximately 20,000 eV/(10 eV/nm) = 2000 nm = 2 μm. A better estimate of this electron “Bethe range” can be made by explicitly considering the energy dependence of dE/ds through integration of the Bethe expression, Eq. 1.1a, from the incident energy down to a lower cut-off energy (typically ~ 2 keV due to limitations on the range of applicability of the Bethe expression; see further discussion below). Based on this calculation, the Bethe range for the selection of elements is shown in .Fig. 1.2. At a particular incident beam energy, the Bethe range decreases as the atomic number of the target increases, while for a particular target, the Bethe range increases as the incident beam energy increases.

1.2 · Inelastic Scattering (Energy Loss) Limits Beam Electron Travel in the Specimen

 

. Fig. 1.1  Bethe continuous

 

 

 

 

energy loss model calculations for

 

 

Bethe continuous energy loss model

dE/ds in C, Al, Cu, Ag, and Au as a

 

 

25

 

 

 

function of electron energy

 

 

 

 

 

 

 

 

 

Au

 

 

(eV/nm)

20

 

 

 

15

Ag

 

 

 

 

 

 

rate

 

Cu

 

 

loss

 

 

 

10

 

 

 

Energy

 

 

 

 

Al

 

 

 

 

 

 

 

5

 

 

 

 

 

C

 

 

 

0

 

 

 

 

5

10

15

20

Incident beam energy (keV)

. Fig. 1.2  Bethe range calcula-

 

 

 

 

 

tion from the continuous energy

 

 

 

 

Bethe range

loss model by integrating over the

 

14000

 

 

 

range of energy from E0 down to a

 

 

 

 

 

cut-off energy of 2 keV

 

12000

 

 

 

 

 

 

 

 

 

 

10000

 

 

 

 

(nm)

8000

 

 

 

 

range

 

 

 

 

 

 

 

 

 

Bethe

6000

 

 

 

 

 

 

 

 

 

 

4000

 

 

 

 

 

2000

 

 

 

 

 

0

 

 

 

 

 

5

10

15

20

Incident beam energy (keV)

3

 

1

 

 

 

25

30

C

Al

Cu, Ag

Au

25 30

kNote the change of scale

The Bethe range for Au with an incident beam energy of 20 keV is approximately 1200 nm, a linear change in scale of a factor of 1200 over an incident beam diameter of 1 nm. If the beam–specimen interactions were restricted to a cylindrical column with the circular beam entrance footprint as its

cross section and the Bethe range as its altitude, the volume of a cylinder 1 nm in diameter and 1200 nm deep would be approximately 940 nm3, and the number of gold atoms it contained would be approximately 7.5 × 104, which can be compared to the incident beam footprint surface atom count of approximately 12.

\4 Chapter 1 · Electron Beam—Specimen Interactions: Interaction Volume

 

1.3\ Elastic Scattering: Beam Electrons

 

1

 

 

 

Change Direction of Flight

 

 

 

 

 

 

 

 

Simultaneously with inelastic scattering, “elastic scattering”

 

events occur when the beam electron is deflected by the elec-

 

trical field of an atom (the positive nuclear charge as partially

 

shielded by the negative charge of the atom’s orbital elec-

 

trons), causing the beam electron to deviate from its previous

 

path onto a new trajectory, as illustrated schematically in

 

.Fig.

1.3a. The probability of elastic scattering depends

 

strongly on the nuclear charge (atomic number Z) and the

 

energy of the electron, E (keV) and is expressed mathemati-

 

cally as a cross section, Q:

 

 

 

 

 

 

Qelastic(>φ 0 ) =1.62×1020 (Z2 / E2 )cot2 (φ0 / 2)

 

 

 

 

 

 

 

2

 

 

(1.2)

 

 

 

[events > φ0 / electron (atom / cm

 

)

\

 

 

 

 

 

 

 

a

b

P1

P1

where ϕ0 is a threshold elastic scattering angle, for example, 2°. Despite the angular deviation, the beam electron energy is effectively unchanged in energy. While the average elastic scattering event causes an angular change of only a few degrees, deviations up to 180o are possible in a single elastic scattering event. Elastic scattering causes beam electrons to deviate out of the narrow angular range of incident trajectories defined by the convergence of the incident beam as controlled by the electron optics.

1.3.1\ How Frequently Does Elastic

Scattering Occur?

The elastic scattering cross section, Eq. 1.2, can be used to estimate how far the beam electron must travel on average to experience an elastic scattering event, a distance called the “mean free path,” λ:

λelastic (cm)= A /

 

 

 

 

(1.3a)

N0 ρQelastic(>φ 0 )

\

 

λelastic (nm)=10

7

 

 

 

 

 

A / N0

ρQelastic(>φ 0 )

 

(1.3b)

 

\

 

 

 

 

 

 

c

P1

P2

P3

. Fig. 1.3a Schematic illustration of elastic scattering. An energetic electron is deflected by the electrical field of an atom at location P1

through an angle ϕelastic. b Schematic illustration of the elastic scattering cone. The energetic electron scatters elastically at point P1 and can

land at any location on the circumference of the base of the cone with equal probability. c Schematic illustration of a second scattering step, carrying the energetic electron from point P2 to point P3

where A is the atomic weight (g/mol), N0 is Avogadro’s number (atoms/mol), and ρ is the density (g/cm3). .Figure 1.4

shows a plot of λelastic for various elements as a function of electron energy, where it can be seen that the mean free path

is of the order of nm. Elastic scattering is thus likely to occur hundreds to thousands of times along a Bethe range of several hundred to several thousand nanometers.