Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Joseph I. Goldstein, Dale E. Newbury [et al.]. Scanning Electron Microscopy and X-Ray Microanalysis. (2017). (ISBN 978-1-4939-6674-5). (ISBN 978-1-4939-6676-9). (DOI 10.1007978-1-4939-6676-9).pdf
Скачиваний:
20
Добавлен:
11.04.2023
Размер:
68.34 Mб
Скачать

References

φ(ρz) distribution. Once the X-ray-induced φ(ρz) generated distribution is determined, the absorption of the outgoing X-ray-induced fluorescence X-rays must be calculated with the absorption path length calculated as above.

The fluorescence factor, Fi, is usually the least important factor in the calculation of composition by evaluating the [ZAF] term in Eq. (19.17). In most analytical cases secondary fluorescence may not occur or the concentration of the element which causes fluorescence may be small. Of the three effects, Z, A, and F, which control X-ray microanalysis calculations, the fluorescence effect, Fi, can be calculated (Reed 1965), with sufficient accuracy so that it rarely limits the development of an accurate analysis.

References

Bastin GF, Heijligers HJM (1990) Quantitative electron probe microanalysis of ultralight elements (boron – oxygen). Scanning 12:225–236 Bastin GF, Heijligers HJM (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantitation. Plenum Press,

New York City, p 163

Castaing R (1951) “Application of electron probes to local chemical and crystallographic analysis” Ph.D. thesis, University of Paris. (English translation available from the Microanalysis Society at: 7http:// www.microanalysissociety.org/

307

 

19

 

 

 

Heinrich KFJ, Myklebust RL, Rasberry SD, Michaelis RE (1971) Preparation and Evaluation of SRM’s 481 and 482 Gold-Silver and Gold-Copper Alloys for Microanalysis. U.S. Government Printing Office, Washington, DC. NBS Spec. Publ., pp 260–28

ISO GUM (2008). Guide to the Expression of Uncertainty in Measurement; Guide 98–3:2008: Geneva, Switzerland, Joint Group for Guides in Metrology, Working Group 1. ISO Central. Secretariat, Vernier, Geneva, Switzerland: International Organization for Standards

Marinenko R, Leigh S (2010) Uncertainties in electron probe microanalysis. Proc Eur Microbeam Anal Soc 7(1):012017

Marinenko R, Blackburn D, Bodkin J (1990) Glasses for Microanalysis: SRMs 1871-1875” National Institute of Standards and Technology (U.S.) Special Publication 260–112 (U.S. Gov. Printing Office, Washington) available at: 7http://www.nist.gov/srm/upload/ SP260-112.PDF

Newbury DE, Swyt CR, Myklebust RL (1995) ‘Standardless’ quantitative electron probe microanalysis with energy-dispersive X-ray spectrometry: is it worth the risk? Anal Chem 67:1866

Pouchou J-L, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantitation. Plenum, New York, p 31

Reed SJB (1965) Characteristic fluorescence corrections in electronprobe microanalysis. Brit J Appl Phys 16:913

Saunders S, Karduck P, Sloof W (2004) Certified reference materials for micro-analysis of carbon and nitrogen. Microchim Acta 145:209 Yakowitz H (1975) Methods of quantitative analysis. In: Goldstein JI,

Yakowitz H, Newbury DE, Lifshin E, Colby JW, Coleman JR (eds) Practical scanning electron microscopy. Plenum, New York, p 338

309

 

20

 

 

 

Quantitative Analysis:

The SEM/EDS Elemental Microanalysis k-ratio Procedure for Bulk Specimens, Step-by-Step

20.1\ Requirements Imposed on the Specimen and Standards – 311

20.2\ Instrumentation Requirements – 311

20.2.1\ Choosing the EDS Parameters – 311

20.2.2\ Choosing the Beam Energy, E0 – 313

20.2.3\ Measuring the Beam Current – 313

20.2.4\ Choosing the Beam Current – 314

20.3\ Examples of the k-ratio/Matrix Correction Protocol with DTSA II – 316

20.3.1\ Analysis of Major Constituents (C > 0.1 Mass Fraction) with Well-­Resolved Peaks – 316

20.3.2\ Analysis of Major Constituents (C > 0.1 Mass Fraction) with Severely Overlapping Peaks – 318

20.3.3\ Analysis of a Minor Constituent with Peak Overlap From a Major Constituent – 319

20.3.4\ Ba-Ti Interference in BaTiSi3O9 – 319

20.3.5\ Ba-Ti Interference: Major/Minor Constituent Interference in K2496 Microanalysis Glass – 319

20.4\ The Need for an Iterative Qualitative and Quantitative Analysis Strategy – 319

20.4.1\ Analysis of a Complex Metal Alloy, IN100 – 320 20.4.2\ Analysis of a Stainless Steel – 323

20.4.3\ Progressive Discovery: Repeated Qualitative–Quantitative Analysis Sequences – 324

20.5\ Is the Specimen Homogeneous? – 326

© Springer Science+Business Media LLC 2018

J. Goldstein et al., Scanning Electron Microscopy and X-Ray Microanalysis, https://doi.org/10.1007/978-1-4939-6676-9_20

20.6\ Beam-Sensitive Specimens – 331

20.6.1\ Alkali Element Migration – 331

20.6.2\ Materials Subject to Mass Loss During Electron Bombardment—the Marshall-Hall Method – 334

\References – 339